LIA-X-fast / app.py
jbilcke-hf's picture
jbilcke-hf HF Staff
let's simplify the demo
23edbfb
import gradio as gr
import torch
from huggingface_hub import hf_hub_download
from gradio_tabs.animation import animation
from gradio_tabs.vid_edit import vid_edit
from gradio_tabs.img_edit import img_edit
from networks.generator import Generator
# Optimize torch.compile performance
torch.set_float32_matmul_precision('high') # Enable TensorFloat32 for better performance
torch._dynamo.config.cache_size_limit = 64 # Increase cache size to reduce recompilations
device = torch.device("cuda")
gen = Generator(size=512, motion_dim=40, scale=2).to(device)
ckpt_path = hf_hub_download(repo_id="YaohuiW/LIA-X", filename="lia-x.pt")
gen.load_state_dict(torch.load(ckpt_path, weights_only=True))
gen.eval()
chunk_size=16
def load_file(path):
with open(path, 'r', encoding='utf-8') as f:
content = f.read()
return content
custom_css = """
<style>
body {
font-family: Georgia, serif; /* Change to your desired font */
}
h1 {
color: black; /* Change title color */
}
</style>
"""
with gr.Blocks(css=custom_css, theme=gr.themes.Soft()) as demo:
gr.HTML(load_file("assets/title.md"))
with gr.Row():
with gr.Accordion(open=False, label="Instruction"):
gr.Markdown(load_file("assets/instruction.md"))
with gr.Row():
with gr.Tabs():
#animation(gen, chunk_size, device)
# for this demo, let's only showcase img_edit
img_edit(gen, device)
#vid_edit(gen, chunk_size, device)
demo.launch(allowed_paths=["./data/source","./data/driving"])