File size: 3,189 Bytes
c42db24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import math
import torch
from torch import nn
from torch.nn import functional as F
from .ops import (EqualConv2d, EqualLinear, ConvLayer)


class ResBlock(nn.Module):
	def __init__(self, in_channel, out_channel):
		super().__init__()

		self.conv1 = ConvLayer(in_channel, out_channel, 3)
		self.conv2 = ConvLayer(out_channel, out_channel, 3, downsample=True)

		self.skip = ConvLayer(in_channel, out_channel, 1, downsample=True, activate=False, bias=False)


	def forward(self, x):
		
		h = x
		
		h = self.conv1(h)
		h = self.conv2(h)

		skip = self.skip(x)
		h = (h + skip) / math.sqrt(2)

		return h


class Encoder2R(nn.Module):
	def __init__(self, latent_dim=512, scale=1):
		super(Encoder2R, self).__init__()
		
		channels = [64*scale, 128*scale, 256*scale, 512*scale]

		# version1
		self.block1 = ConvLayer(3, channels[0], 1) # 256, 3 -> 64
		self.block2 = nn.Sequential(
			ResBlock(channels[0], channels[1])
		) # 64 -> 128
		self.block3 = nn.Sequential(
			ResBlock(channels[1], channels[2])
		) # 128 -> 256
		self.block4 = nn.Sequential(
			ResBlock(channels[2], channels[3])
		) # 256 -> 512
		self.block5 = nn.Sequential(
			ResBlock(channels[3], channels[3])
		) # 512 -> 512
		self.block6 = nn.Sequential(
			ResBlock(channels[3], channels[3])
		) # 512 -> 512
		self.block7 = nn.Sequential(
			ResBlock(channels[3], channels[3])
		) # 512 -> 512
		
		self.block_512 = ResBlock(channels[3], channels[3])
		self.block8 = EqualConv2d(channels[3], latent_dim, 4, padding=0, bias=False)

	def forward(self, x):

		res = []
		h = x
		h = self.block1(h) # 256
		res.append(h)
		h = self.block2(h) # 128
		res.append(h)
		h = self.block3(h) # 64
		res.append(h)
		h = self.block4(h) # 32
		res.append(h)
		h = self.block5(h) # 16
		res.append(h)
		h = self.block6(h) # 8
		res.append(h)
		h = self.block7(h) # 4
		res.append(h)
		h = self.block_512(h)
		h = self.block8(h) # 1

		return h.squeeze(-1).squeeze(-1), res[::-1]


class Encoder(nn.Module):
	def __init__(self, dim=512, dim_motion=20, scale=1):
		super(Encoder, self).__init__()

		# 2R netmork
		self.enc_2r = Encoder2R(dim, scale)

		# R2T
		self.enc_r2t = nn.Sequential(
			EqualLinear(dim, dim_motion)
		)
	
	def enc_motion(self, x):

		z_t2r, _ = self.enc_2r(x)
		alpha_r2t = self.enc_r2t(z_t2r)

		return alpha_r2t


	def enc_transfer_img(self, z_s2r, d_l, s_l):

		alpha_r2s = self.enc_r2t(z_s2r)
		alpha_r2s[:, d_l] = alpha_r2s[:, d_l] + torch.FloatTensor(s_l).unsqueeze(0).to('cuda')
		alpha = [alpha_r2s]

		return alpha

	def enc_transfer_vid(self, alpha_r2s, input_target, alpha_start):

		z_t2r, _ = self.enc_2r(input_target)
		alpha_r2t = self.enc_r2t(z_t2r)
		alpha = [alpha_r2t, alpha_r2s, alpha_start]

		return alpha


	def forward(self, input_source, input_target, alpha_start=None):

		if input_target is not None:

			z_s2r, feats = self.enc_2r(input_source)
			z_t2r, _ = self.enc_2r(input_target)

			alpha_r2t = self.enc_r2t(z_t2r)

			if alpha_start is not None:
				alpha_r2s = self.enc_r2t(z_s2r)
				alpha = [alpha_r2t, alpha_r2s, alpha_start]
			else:
				alpha = [alpha_r2t]

			return z_s2r, alpha, feats
		else:
			z_s2r, feats = self.enc_2r(input_source)

			return z_s2r, None, feats