Spaces:
Running
on
A100
Running
on
A100
File size: 9,298 Bytes
01c0e76 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
from typing import Optional
from einops import rearrange
import torch
import torch.nn as nn
from .activation_layers import get_activation_layer
from .attn_layers import attention
from .norm_layers import get_norm_layer
from .embed_layers import TimestepEmbedder, TextProjection
from .attn_layers import attention
from .mlp_layers import MLP
from .modulate_layers import apply_gate
class IndividualTokenRefinerBlock(nn.Module):
"""
Transformer block for refining individual tokens with adaptive layer normalization.
Combines self-attention and feed-forward network (FFN) layers with modulation
based on conditional inputs (timestep and context embeddings). Supports query-key
normalization for improved attention stability.
"""
def __init__(
self,
hidden_size,
num_heads,
mlp_ratio: str = 4.0,
mlp_drop_rate: float = 0.0,
act_type: str = "silu",
qk_norm: bool = False,
qk_norm_type: str = "layer",
qkv_bias: bool = True,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
):
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__()
self.num_heads = num_heads
head_dim = hidden_size // num_heads
mlp_hidden_dim = int(hidden_size * mlp_ratio)
self.norm1 = nn.LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6, **factory_kwargs)
self.self_attn_qkv = nn.Linear(hidden_size, hidden_size * 3, bias=qkv_bias, **factory_kwargs)
qk_norm_layer = get_norm_layer(qk_norm_type)
self.self_attn_q_norm = (
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
if qk_norm
else nn.Identity()
)
self.self_attn_k_norm = (
qk_norm_layer(head_dim, elementwise_affine=True, eps=1e-6, **factory_kwargs)
if qk_norm
else nn.Identity()
)
self.self_attn_proj = nn.Linear(hidden_size, hidden_size, bias=qkv_bias, **factory_kwargs)
self.norm2 = nn.LayerNorm(hidden_size, elementwise_affine=True, eps=1e-6, **factory_kwargs)
act_layer = get_activation_layer(act_type)
self.mlp = MLP(
in_channels=hidden_size,
hidden_channels=mlp_hidden_dim,
act_layer=act_layer,
drop=mlp_drop_rate,
**factory_kwargs,
)
self.adaLN_modulation = nn.Sequential(
act_layer(),
nn.Linear(hidden_size, 2 * hidden_size, bias=True, **factory_kwargs)
)
# Zero-initialize the modulation
nn.init.zeros_(self.adaLN_modulation[1].weight)
nn.init.zeros_(self.adaLN_modulation[1].bias)
def forward(
self,
x: torch.Tensor,
c: torch.Tensor, # timestep_aware_representations + context_aware_representations
attn_mask: torch.Tensor = None,
):
"""
Forward pass of the transformer block.
Args:
x: Input token embeddings (batch_size, seq_len, hidden_size)
c: Conditional embeddings (batch_size, hidden_size)
attn_mask: Attention mask (batch_size, 1, seq_len, seq_len)
Returns:
Updated token embeddings after self-attention and FFN
"""
gate_msa, gate_mlp = self.adaLN_modulation(c).chunk(2, dim=1)
norm_x = self.norm1(x)
qkv = self.self_attn_qkv(norm_x)
q, k, v = rearrange(qkv, "B L (K H D) -> K B L H D", K=3, H=self.num_heads)
# Apply QK-Norm if needed
q = self.self_attn_q_norm(q).to(v)
k = self.self_attn_k_norm(k).to(v)
# Self-Attention
attn = attention(q, k, v, mode="torch", attn_mask=attn_mask)
x = x + apply_gate(self.self_attn_proj(attn), gate_msa)
# FFN Layer
x = x + apply_gate(self.mlp(self.norm2(x)), gate_mlp)
return x
class IndividualTokenRefiner(nn.Module):
"""
Stack of IndividualTokenRefinerBlocks for sequential token refinement.
Processes token sequences through multiple transformer blocks with
attention masking support for handling variable-length sequences.
"""
def __init__(
self,
hidden_size,
num_heads,
depth,
mlp_ratio: float = 4.0,
mlp_drop_rate: float = 0.0,
act_type: str = "silu",
qk_norm: bool = False,
qk_norm_type: str = "layer",
qkv_bias: bool = True,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
):
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__()
self.blocks = nn.ModuleList([
IndividualTokenRefinerBlock(
hidden_size=hidden_size,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
mlp_drop_rate=mlp_drop_rate,
act_type=act_type,
qk_norm=qk_norm,
qk_norm_type=qk_norm_type,
qkv_bias=qkv_bias,
**factory_kwargs,
) for _ in range(depth)
])
def forward(
self,
x: torch.Tensor,
c: torch.LongTensor,
mask: Optional[torch.Tensor] = None,
):
"""
Forward pass through the stack of transformer blocks.
Args:
x: Input token embeddings (batch_size, seq_len, hidden_size)
c: Conditional embeddings (batch_size, hidden_size)
mask: Sequence mask indicating valid tokens (batch_size, seq_len)
Returns:
Refined token embeddings after all blocks
"""
self_attn_mask = None
if mask is not None:
batch_size = mask.shape[0]
seq_len = mask.shape[1]
mask = mask.to(x.device)
# batch_size x 1 x seq_len x seq_len
self_attn_mask_1 = mask.view(batch_size, 1, 1, seq_len).repeat(1, 1, seq_len, 1)
# batch_size x 1 x seq_len x seq_len
self_attn_mask_2 = self_attn_mask_1.transpose(2, 3)
# batch_size x 1 x seq_len x seq_len, 1 for broadcasting of num_heads
self_attn_mask = (self_attn_mask_1 & self_attn_mask_2).bool()
# avoids self-attention weight being NaN for padding tokens
self_attn_mask[:, :, :, 0] = True
for block in self.blocks:
x = block(x, c, self_attn_mask)
return x
class SingleTokenRefiner(nn.Module):
"""
Complete token refinement module with input embedding and conditional modulation.
Integrates timestep embedding, context projection, and a stack of transformer
blocks to refine token sequences based on both input data and conditional inputs.
"""
def __init__(
self,
in_channels,
hidden_size,
num_heads,
depth,
mlp_ratio: float = 4.0,
mlp_drop_rate: float = 0.0,
act_type: str = "silu",
qk_norm: bool = False,
qk_norm_type: str = "layer",
qkv_bias: bool = True,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
):
factory_kwargs = {'device': device, 'dtype': dtype}
super().__init__()
self.input_embedder = nn.Linear(in_channels, hidden_size, bias=True, **factory_kwargs)
act_layer = get_activation_layer(act_type)
# Build timestep embedding layer
self.t_embedder = TimestepEmbedder(hidden_size, act_layer, **factory_kwargs)
# Build context embedding layer
self.c_embedder = TextProjection(in_channels, hidden_size, act_layer, **factory_kwargs)
self.individual_token_refiner = IndividualTokenRefiner(
hidden_size=hidden_size,
num_heads=num_heads,
depth=depth,
mlp_ratio=mlp_ratio,
mlp_drop_rate=mlp_drop_rate,
act_type=act_type,
qk_norm=qk_norm,
qk_norm_type=qk_norm_type,
qkv_bias=qkv_bias,
**factory_kwargs
)
def forward(
self,
x: torch.Tensor,
t: torch.LongTensor,
mask: Optional[torch.LongTensor] = None,
):
"""
Forward pass of the complete token refiner.
Args:
x: Input features (batch_size, seq_len, in_channels)
t: Timestep indices (batch_size,)
mask: Sequence mask for variable-length inputs (batch_size, seq_len)
Returns:
Refined token embeddings (batch_size, seq_len, hidden_size)
"""
timestep_aware_representations = self.t_embedder(t)
if mask is None:
context_aware_representations = x.mean(dim=1)
else:
mask_float = mask.float().unsqueeze(-1) # [b, s1, 1]
context_aware_representations = (
(x * mask_float).sum(dim=1) / mask_float.sum(dim=1)
)
context_aware_representations = self.c_embedder(context_aware_representations)
c = timestep_aware_representations + context_aware_representations
x = self.input_embedder(x)
x = self.individual_token_refiner(x, c, mask)
return x
|