from torch import nn class DropoutNet(nn.Module): def __init__(self): super(DropoutNet, self).__init__() self.layer1 = nn.Sequential( nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2), nn.BatchNorm2d(16), nn.ReLU(), nn.Dropout2d(0.1)) self.layer2 = nn.Sequential( nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2), nn.BatchNorm2d(32), nn.ReLU(), nn.Dropout2d(0.1)) self.layer3 = nn.Sequential( nn.Conv2d(32, 64, kernel_size=5, stride=1, padding=2), nn.BatchNorm2d(64), nn.ReLU(), nn.Dropout2d(0.1)) self.layer4 = nn.Sequential( nn.Conv2d(64, 128, kernel_size=5, stride=1, padding=2), nn.BatchNorm2d(128), nn.ReLU(), nn.Dropout2d(0.1)) self.layer5 = nn.Sequential( nn.Conv2d(128, 256, kernel_size=5, stride=1, padding=2), nn.BatchNorm2d(256), nn.ReLU(), nn.Dropout2d(0.1)) self.fc = nn.Sequential( nn.Linear(256*28*28, 256), nn.ReLU(), nn.Linear(256, 128), nn.ReLU(), nn.Linear(128, 64), nn.ReLU(), nn.Linear(64, 32), nn.ReLU(), nn.Linear(32, 16), nn.ReLU(), nn.Linear(16, 4) ) def forward(self, x): x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.layer5(x) x = x.view(x.size(0), -1) x = self.fc(x) return x