Spaces:
Sleeping
Sleeping
File size: 5,550 Bytes
52c6dbe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import os
import tempfile
import streamlit as st
from streamlit_chat import message
from preprocessing import Model
# Home Page Setup
st.set_page_config(
page_title="PDF Insight Pro",
page_icon="π",
layout="centered",
)
# Custom CSS for a more polished look
st.markdown("""
<style>
.main {
background-color: #f5f5f5;
}
.stButton button {
background-color: #4CAF50;
color: white;
border-radius: 8px;
}
.stTextInput input {
border-radius: 8px;
padding: 10px;
}
.stFileUploader input {
border-radius: 8px;
}
.stMarkdown h1 {
color: #4CAF50;
}
</style>
""", unsafe_allow_html=True)
# Custom title and header
st.title("π PDF Insight Pro")
st.subheader("Empower Your Documents with AI-Driven Insights")
def display_messages():
"""
Displays the chat messages in the Streamlit UI.
"""
st.subheader("π¨οΈ Conversation")
st.markdown("---")
for i, (msg, is_user) in enumerate(st.session_state["messages"]):
message(msg, is_user=is_user, key=str(i))
st.session_state["process_input_spinner"] = st.empty()
def process_user_input():
"""
Processes the user input by generating a response from the assistant.
"""
if st.session_state["user_input"] and len(st.session_state["user_input"].strip()) > 0:
user_input = st.session_state["user_input"].strip()
with st.session_state["process_input_spinner"], st.spinner("Analyzing..."):
agent_response = st.session_state["assistant"].get_response(
user_input,
st.session_state["temperature"],
st.session_state["max_tokens"],
st.session_state["model"]
)
st.session_state["messages"].append((user_input, True))
st.session_state["messages"].append((agent_response, False))
st.session_state["user_input"] = ""
def process_file():
"""
Processes the uploaded PDF file and appends its content to the context.
"""
for file in st.session_state["file_uploader"]:
with tempfile.NamedTemporaryFile(delete=False) as tf:
tf.write(file.getbuffer())
file_path = tf.name
with st.session_state["process_file_spinner"], st.spinner(f"Processing {file.name}..."):
try:
st.session_state["assistant"].add_to_context(file_path)
except Exception as e:
st.error(f"Failed to process file {file.name}: {str(e)}")
os.remove(file_path)
def main_page():
"""
Main function to set up the Streamlit UI and handle user interactions.
"""
# Initialize session state variables
if "messages" not in st.session_state:
st.session_state["messages"] = []
if "assistant" not in st.session_state:
st.session_state["assistant"] = Model()
if "user_input" not in st.session_state:
st.session_state["user_input"] = ""
if "temperature" not in st.session_state:
st.session_state["temperature"] = 0.5
if "max_tokens" not in st.session_state:
st.session_state["max_tokens"] = 550
if "model" not in st.session_state:
st.session_state["model"] = "llama-3.1-8b-instant"
# File uploader
st.subheader("π€ Upload Your PDF Documents")
st.file_uploader(
"Choose PDF files to analyze",
type=["pdf"],
key="file_uploader",
on_change=process_file,
accept_multiple_files=True,
)
st.session_state["process_file_spinner"] = st.empty()
# Document management section
if st.session_state["assistant"].contexts:
st.subheader("ποΈ Manage Uploaded Documents")
for i, context in enumerate(st.session_state["assistant"].contexts):
st.text_area(f"Document {i+1} Context", context[:500] + "..." if len(context) > 500 else context, height=100)
if st.button(f"Remove Document {i+1}"):
st.session_state["assistant"].remove_from_context(i)
# Model settings
with st.expander("βοΈ Customize AI Settings", expanded=True):
st.slider("Sampling Temperature", min_value=0.0, max_value=1.0, step=0.1, key="temperature", help="Higher values make output more random.")
st.slider("Max Tokens", min_value=50, max_value=1000, step=50, key="max_tokens", help="Limits the length of the response.")
st.selectbox("Choose AI Model", ["llama-3.1-8b-instant", "llama3-70b-8192", "gemma-7b-it"], key="model")
# Display messages and input box
display_messages()
st.text_input("Type your query and hit Enter", key="user_input", on_change=process_user_input, placeholder="Ask something about your documents...")
# Developer info and bug report
st.subheader("π Bug Report")
st.markdown("""
If you encounter any bugs or issues while using the app, please send a bug report to the developer. You can include a screenshot (optional) to help identify the problem.\n
""")
st.subheader("π‘ Suggestions")
st.markdown("""
Suggestions to improve the app's UI and user interface are also welcome. Feel free to reach out to the developer with your suggestions.\n
""")
st.subheader("π¨βπ» Developer Info")
st.markdown("""
**Developer**: Jatin Mehra\n
**Email**: [email protected]\n
**Mobile**: 9910364780\n
""")
if __name__ == "__main__":
main_page() |