Spaces:
Sleeping
Sleeping
File size: 4,544 Bytes
7b5b9e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import os
import torch
import gradio as gr
from train_optimized import GPT, GPTConfig
from huggingface_hub import hf_hub_download
import json
# Cache for model and tokenizer
MODEL = None
CHARS = None
STOI = None
ITOS = None
def initialize():
global MODEL, CHARS, STOI, ITOS
if MODEL is None:
print("Loading model and tokenizer...")
# Download model files from HF Hub
config_path = hf_hub_download(repo_id="jatingocodeo/shakespeare-decoder", filename="config.json")
model_path = hf_hub_download(repo_id="jatingocodeo/shakespeare-decoder", filename="pytorch_model.bin")
# Load config
with open(config_path, 'r') as f:
config_dict = json.load(f)
# Initialize model with config
config = GPTConfig(
vocab_size=config_dict['vocab_size'],
n_layer=config_dict['n_layer'],
n_head=config_dict['n_head'],
n_embd=config_dict['n_embd'],
block_size=config_dict['block_size'],
dropout=config_dict['dropout'],
bias=config_dict['bias']
)
model = GPT(config)
# Load model weights
state_dict = torch.load(model_path, map_location='cpu')
model.load_state_dict(state_dict)
model.eval()
MODEL = model
# Initialize tokenizer
# Download input.txt from the repository
try:
input_path = hf_hub_download(repo_id="jatingocodeo/shakespeare-decoder", filename="input.txt")
with open(input_path, 'r', encoding='utf-8') as f:
text = f.read()
except:
# Fallback to Shakespeare text if input.txt is not in the repo
text = """
First Citizen:
Before we proceed any further, hear me speak.
All:
Speak, speak.
First Citizen:
You are all resolved rather to die than to famish?
"""
CHARS = sorted(list(set(text)))
STOI = {ch:i for i,ch in enumerate(CHARS)}
ITOS = {i:ch for i,ch in enumerate(CHARS)}
print("Model and tokenizer loaded successfully!")
def generate_text(
prompt,
max_new_tokens=100,
temperature=0.8,
top_k=50
):
# Initialize if not already done
if MODEL is None:
initialize()
# Encode the prompt
encode = lambda s: [STOI[c] for c in s]
decode = lambda l: ''.join([ITOS[i] for i in l])
try:
# Convert prompt to tensor
x = torch.tensor(encode(prompt), dtype=torch.long)[None,...]
# Generate
with torch.no_grad():
y = MODEL.generate(x, max_new_tokens, temperature, top_k)[0]
# Decode and return
generated_text = decode(y.tolist())
return generated_text
except KeyError:
return "Error: The prompt contains characters that are not in the training data. Please use only standard English characters."
except Exception as e:
return f"Error generating text: {str(e)}"
# Initialize on startup
initialize()
# Create Gradio interface
demo = gr.Interface(
fn=generate_text,
inputs=[
gr.Textbox(
label="Prompt",
placeholder="Enter your prompt here...",
lines=5
),
gr.Slider(
label="Max New Tokens",
minimum=10,
maximum=500,
value=100,
step=10
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=2.0,
value=0.8,
step=0.1
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=100,
value=50,
step=1
),
],
outputs=gr.Textbox(label="Generated Text", lines=10),
title="Shakespeare GPT",
description="""
This is a GPT model trained on Shakespeare's text. Enter a prompt and the model will continue it in Shakespeare's style.
Parameters:
- Temperature: Higher values make the output more random, lower values make it more deterministic
- Top-k: Number of highest probability tokens to consider at each step
- Max New Tokens: Maximum number of tokens to generate
""",
examples=[
["To be, or not to be,", 100, 0.8, 50],
["Friends, Romans, countrymen,", 150, 0.7, 40],
["Now is the winter of", 200, 0.9, 30],
]
)
if __name__ == "__main__":
demo.launch() |