Create utils.py
Browse files
utils.py
ADDED
|
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import requests
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import datetime
|
| 4 |
+
import pytz
|
| 5 |
+
import numpy as np
|
| 6 |
+
import math
|
| 7 |
+
import ta
|
| 8 |
+
|
| 9 |
+
class StockDataFetcher:
|
| 10 |
+
def __init__(self):
|
| 11 |
+
|
| 12 |
+
self.base_url = "https://groww.in/v1/api/charting_service/v3/chart/exchange/NSE/segment/CASH/"
|
| 13 |
+
self.base_fno_url = "https://groww.in/v1/api/stocks_fo_data/v3/charting_service/chart/exchange/NSE/segment/FNO/"
|
| 14 |
+
self.latest_stock_price = "https://groww.in/v1/api/stocks_data/v1/tr_live_prices/exchange/NSE/segment/CASH/"
|
| 15 |
+
self.latest_option_price = "https://groww.in/v1/api/stocks_fo_data/v1/tr_live_prices/exchange/NSE/segment/FNO/"
|
| 16 |
+
self.option_chain = "https://groww.in/v1/api/option_chain_service/v1/option_chain/derivatives/"
|
| 17 |
+
self.search_url = "https://groww.in/v1/api/search/v1/entity"
|
| 18 |
+
self.news_url = "https://groww.in/v1/api/stocks_company_master/v1/company_news/groww_contract_id/"
|
| 19 |
+
self.all_stocks_url = "https://groww.in/v1/api/stocks_data/v1/all_stocks"
|
| 20 |
+
|
| 21 |
+
self.indian_timezone = pytz.timezone('Asia/Kolkata')
|
| 22 |
+
self.utc_timezone = pytz.timezone('UTC')
|
| 23 |
+
self.headers = {
|
| 24 |
+
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0'
|
| 25 |
+
}
|
| 26 |
+
|
| 27 |
+
def _get_time_range(self, days=7):
|
| 28 |
+
current_time = datetime.datetime.now(self.indian_timezone)
|
| 29 |
+
start_time = current_time - datetime.timedelta(days=days)
|
| 30 |
+
start_time_utc = start_time.astimezone(pytz.utc)
|
| 31 |
+
current_time_utc = current_time.astimezone(pytz.utc)
|
| 32 |
+
start_time_millis = int(start_time_utc.timestamp() * 1000)
|
| 33 |
+
end_time_millis = int(current_time_utc.timestamp() * 1000)
|
| 34 |
+
return start_time_millis, end_time_millis
|
| 35 |
+
|
| 36 |
+
def fetch_stock_data(self, symbol, interval=15, days=7):
|
| 37 |
+
start_time, end_time = self._get_time_range(days)
|
| 38 |
+
params = {
|
| 39 |
+
'endTimeInMillis': end_time,
|
| 40 |
+
'intervalInMinutes': interval,
|
| 41 |
+
'startTimeInMillis': start_time,
|
| 42 |
+
}
|
| 43 |
+
try:
|
| 44 |
+
print("Downloading data of", symbol.upper())
|
| 45 |
+
if symbol[-2:].upper() == "PE" or symbol[-2:].upper() == "CE" or symbol[-3:].upper() == "FUT":
|
| 46 |
+
response = requests.get(self.base_fno_url + symbol.upper(), params=params, headers=self.headers)
|
| 47 |
+
else:
|
| 48 |
+
response = requests.get(self.base_url + symbol.upper(), params=params, headers=self.headers)
|
| 49 |
+
response.raise_for_status()
|
| 50 |
+
data = response.json()
|
| 51 |
+
columns = ['Date', 'Open', 'High', 'Low', 'Close', 'Volume']
|
| 52 |
+
for row in data['candles']:
|
| 53 |
+
row[0] = datetime.datetime.utcfromtimestamp(row[0])
|
| 54 |
+
df = pd.DataFrame(data['candles'], columns=columns)
|
| 55 |
+
df['Date'] = pd.to_datetime(df['Date'])
|
| 56 |
+
df['Date'] = df['Date'].dt.tz_localize(self.utc_timezone).dt.tz_convert(self.indian_timezone)
|
| 57 |
+
return df
|
| 58 |
+
except requests.exceptions.RequestException as e:
|
| 59 |
+
print(f"Error during API request: {e}")
|
| 60 |
+
return None
|
| 61 |
+
|
| 62 |
+
def fetch_latest_price(self, symbol):
|
| 63 |
+
try:
|
| 64 |
+
if symbol[-2:].upper() == "PE" or symbol[-2:].upper() == "CE" or symbol[-3:].upper() == "FUT":
|
| 65 |
+
response = requests.get(self.latest_option_price + symbol.upper() + "/latest", headers=self.headers)
|
| 66 |
+
else:
|
| 67 |
+
response = requests.get(self.latest_stock_price + symbol.upper() + "/latest", headers=self.headers)
|
| 68 |
+
if response.status_code == 200:
|
| 69 |
+
data = response.json()
|
| 70 |
+
latest_price = data.get('ltp')
|
| 71 |
+
print(symbol, 'Price: ', latest_price)
|
| 72 |
+
return latest_price
|
| 73 |
+
else:
|
| 74 |
+
print(f"Failed to fetch data. Status code: {response.status_code}")
|
| 75 |
+
return None
|
| 76 |
+
except Exception as e:
|
| 77 |
+
print(f"An error occurred: {e}")
|
| 78 |
+
return None
|
| 79 |
+
|
| 80 |
+
def fetch_option_chain(self, symbol):
|
| 81 |
+
response = requests.get(self.option_chain + symbol, headers=self.headers)
|
| 82 |
+
data = response.json()['optionChain']['optionChains']
|
| 83 |
+
ltp = response.json()['livePrice']['value']
|
| 84 |
+
|
| 85 |
+
chain = []
|
| 86 |
+
for i in range(len(data)):
|
| 87 |
+
chain.append({"Symbol_CE": data[i]["callOption"]['growwContractId'], "OI_CALL": data[i]["callOption"]['openInterest'] , "CALL": data[i]["callOption"]['ltp'], "strikePrice": data[i]['strikePrice']/100, "PUT": data[i]["putOption"]['ltp'], "OI_PUT": data[i]["putOption"]['openInterest'], "Symbol_PE": data[i]["putOption"]['growwContractId']}
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
chain = pd.DataFrame(chain)
|
| 91 |
+
index = chain[(chain['strikePrice'] >= ltp)].head(1).index[0]
|
| 92 |
+
print(response.json()['livePrice'])
|
| 93 |
+
chain = chain[index-6:index+7].reset_index(drop=True)
|
| 94 |
+
optin_exp = chain['Symbol_CE'][0][:-7]
|
| 95 |
+
return chain, optin_exp
|
| 96 |
+
|
| 97 |
+
def search_entity(self, symbol, entity=None, page=0, size=1, app=False):
|
| 98 |
+
params = {
|
| 99 |
+
'app': app,
|
| 100 |
+
'entity_type': entity,
|
| 101 |
+
'page': page,
|
| 102 |
+
'q': f"{symbol}",
|
| 103 |
+
'size': size
|
| 104 |
+
}
|
| 105 |
+
try:
|
| 106 |
+
response = requests.get(self.search_url, params=params, headers=self.headers)
|
| 107 |
+
response.raise_for_status()
|
| 108 |
+
data = response.json()
|
| 109 |
+
entity = data['content'][0]
|
| 110 |
+
return {"ID": entity['id'], "title": entity['title'], "NSE_Symbol": entity['nse_scrip_code'], "contract_id" : entity["groww_contract_id"]}
|
| 111 |
+
except requests.exceptions.RequestException as e:
|
| 112 |
+
print(f"Error during API request: {e}")
|
| 113 |
+
return None
|
| 114 |
+
|
| 115 |
+
def fetch_stock_news(self, symbol, page=1, size=1):
|
| 116 |
+
params = {
|
| 117 |
+
"page" : page,
|
| 118 |
+
"size" : size
|
| 119 |
+
}
|
| 120 |
+
try:
|
| 121 |
+
symbol_id = self.search_entity(symbol.upper())['contract_id']
|
| 122 |
+
response = requests.get(self.news_url + symbol_id, headers=self.headers, params=params).json()['results']
|
| 123 |
+
print(response)
|
| 124 |
+
news = []
|
| 125 |
+
for i in range(len(response)):
|
| 126 |
+
Title = response[i]['title']
|
| 127 |
+
Summary = response[i]['summary']
|
| 128 |
+
Url = response[i]['url']
|
| 129 |
+
Date = response[i]['pubDate']
|
| 130 |
+
Source = response[i]['source']
|
| 131 |
+
CompanyName = response[i]['companies'][0]['companyName']
|
| 132 |
+
ScripCode = response[i]['companies'][0]['nseScripCode']
|
| 133 |
+
BlogUrl = response[i]['companies'][0]['blogUrl']
|
| 134 |
+
Topics = response[i]['topics'][0]
|
| 135 |
+
|
| 136 |
+
news.append({
|
| 137 |
+
'title': Title,
|
| 138 |
+
'summary': Summary,
|
| 139 |
+
'url': Url,
|
| 140 |
+
'pubDate': Date,
|
| 141 |
+
'source': Source,
|
| 142 |
+
'companyName': CompanyName,
|
| 143 |
+
'symbol': ScripCode,
|
| 144 |
+
'blogUrl': BlogUrl,
|
| 145 |
+
'topics': Topics
|
| 146 |
+
})
|
| 147 |
+
|
| 148 |
+
news_table = pd.DataFrame(news)
|
| 149 |
+
return news_table
|
| 150 |
+
except:
|
| 151 |
+
print("Something went wrong")
|
| 152 |
+
return None
|
| 153 |
+
|
| 154 |
+
def fetch_all_stock(self):
|
| 155 |
+
try:
|
| 156 |
+
params = {
|
| 157 |
+
'listFilters': {'INDUSTRY': [], 'INDEX': []},
|
| 158 |
+
'INDEX': ["BSE 100", "Nifty 100", "Nifty Bank", "Nifty Next 50", "Nifty Midcap 100", "SENSEX", "Nifty 50"],
|
| 159 |
+
'INDUSTRY': [],
|
| 160 |
+
'objFilters': {'CLOSE_PRICE': {'max': 100000, 'min': 0}, 'MARKET_CAP': {'min': 0, 'max': 2000000000000000}},
|
| 161 |
+
'CLOSE_PRICE': {'max': 100000, 'min': 0},
|
| 162 |
+
'MARKET_CAP': {'min': 0, 'max': 2000000000000000},
|
| 163 |
+
'size': "1000",
|
| 164 |
+
'sortBy': "NA",
|
| 165 |
+
'sortType': "ASC"
|
| 166 |
+
}
|
| 167 |
+
|
| 168 |
+
all_data = []
|
| 169 |
+
page = 0
|
| 170 |
+
while True:
|
| 171 |
+
params['page'] = str(page)
|
| 172 |
+
response = requests.post(self.all_stocks_url, headers=self.headers, json=params)
|
| 173 |
+
data = response.json()
|
| 174 |
+
records = data.get('records', [])
|
| 175 |
+
if not records:
|
| 176 |
+
break
|
| 177 |
+
all_data.extend(records)
|
| 178 |
+
page += 1
|
| 179 |
+
|
| 180 |
+
df = pd.DataFrame(all_data)
|
| 181 |
+
live_price_df = pd.json_normalize(df['livePriceDto'])
|
| 182 |
+
df = pd.concat([df, live_price_df], axis=1)
|
| 183 |
+
df = df.drop(columns=['livePriceDto'])
|
| 184 |
+
return df
|
| 185 |
+
except:
|
| 186 |
+
return None
|
| 187 |
+
|
| 188 |
+
def realtime_signal(self, symbol, intervals=15, days=10):
|
| 189 |
+
|
| 190 |
+
rounding_value=None
|
| 191 |
+
|
| 192 |
+
if symbol.upper() == "NIFTY":
|
| 193 |
+
index_symbol = "NIFTY"
|
| 194 |
+
rounding_value = 50
|
| 195 |
+
|
| 196 |
+
elif symbol.upper() == "NIFTY-BANK":
|
| 197 |
+
index_symbol = "BANKNIFTY"
|
| 198 |
+
rounding_value = 100
|
| 199 |
+
|
| 200 |
+
else:
|
| 201 |
+
pass
|
| 202 |
+
|
| 203 |
+
stock_data = self.fetch_stock_data(index_symbol, intervals, days)
|
| 204 |
+
chain, exp = self.fetch_option_chain(symbol.upper())
|
| 205 |
+
stock_data['RSI'] = ta.momentum.rsi(stock_data['Close'], window=14)
|
| 206 |
+
stock_data = stock_data.drop(columns=['Volume'])
|
| 207 |
+
stock_data['Prev_RSI'] = stock_data['RSI'].shift(1)
|
| 208 |
+
stock_data['Signal'] = 0
|
| 209 |
+
call_condition = (stock_data['RSI'] > 60) & (stock_data['Prev_RSI'] < 60)
|
| 210 |
+
put_condition = (stock_data['RSI'] < 40) & (stock_data['Prev_RSI'] > 40)
|
| 211 |
+
stock_data.loc[call_condition, 'Signal'] = 1
|
| 212 |
+
stock_data.loc[put_condition, 'Signal'] = 2
|
| 213 |
+
stock_data = stock_data.dropna().reset_index(drop=True)
|
| 214 |
+
|
| 215 |
+
def floor_to_nearest(value, nearest):
|
| 216 |
+
return math.ceil(value / nearest) * nearest
|
| 217 |
+
|
| 218 |
+
stock_data['Option'] = stock_data['Close'].apply(lambda x: floor_to_nearest(x, rounding_value))
|
| 219 |
+
|
| 220 |
+
stock_data['direction'] = np.where(stock_data['Signal'] == 2, "PE", np.where(stock_data['Signal'] == 1, "CE", ""))
|
| 221 |
+
stock_data['symbol'] = exp + stock_data['Option'].astype(str) + stock_data['direction']
|
| 222 |
+
return stock_data
|