Spaces:
Sleeping
Sleeping
import streamlit as st | |
import replicate | |
import os | |
from dotenv import load_dotenv | |
from reportlab.pdfgen import canvas | |
import tempfile | |
# Load environment variables from .env file | |
load_dotenv() | |
# App title | |
st.set_page_config(page_title="π€π¬ Galactic Assistant QuasarBot") | |
# Replicate Credentials | |
with st.sidebar: | |
st.title('π€π¬ Galactic Assistant: QuasarBot') | |
st.write('This chatbot is created using the open-source Llama 3 LLM model from Meta.') | |
replicate_api = os.getenv('REPLICATE_API_TOKEN') | |
if replicate_api: | |
st.success('API key already provided!', icon='β ') | |
else: | |
replicate_api = st.text_input('Enter Replicate API token:', type='password') | |
if not (replicate_api.startswith('r8_') and len(replicate_api) == 40): | |
st.warning('Please enter your credentials!', icon='β οΈ') | |
else: | |
st.success('Proceed to entering your prompt message!', icon='π') | |
os.environ['REPLICATE_API_TOKEN'] = replicate_api | |
st.subheader('Models and parameters') | |
selected_model = st.sidebar.selectbox('Choose a Llama3 model', ['Llama3-70B'], key='selected_model') | |
if selected_model == 'Llama3-70B': | |
llm = 'meta/meta-llama-3-70b-instruct' | |
temperature = st.sidebar.slider('temperature', min_value=0.01, max_value=1.0, value=0.6, step=0.01) | |
top_p = st.sidebar.slider('top_p', min_value=0.01, max_value=1.0, value=0.9, step=0.01) | |
max_length = st.sidebar.slider('max_length', min_value=32, max_value=512, value=512, step=8) | |
st.markdown('π Learn how to build this app in this [blog](https://replicate.com/meta/meta-llama-3-70b-instruct)!') | |
# Store LLM generated responses | |
if "messages" not in st.session_state.keys(): | |
st.session_state.messages = [{"role": "assistant", "content": "How may I assist you today?"}] | |
# Display or clear chat messages | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.write(message["content"]) | |
def clear_chat_history(): | |
st.session_state.messages = [{"role": "assistant", "content": "How may I assist you today?"}] | |
st.sidebar.button('Clear Chat History', on_click=clear_chat_history) | |
# Function for generating LLaMA3 response | |
def generate_llama3_response(prompt_input): | |
string_dialogue = "You are a helpful assistant. You do not respond as 'User' or pretend to be 'User'. You only respond once as 'Assistant'." | |
for dict_message in st.session_state.messages: | |
if dict_message["role"] == "user": | |
string_dialogue += "User: " + dict_message["content"] + "\n\n" | |
else: | |
string_dialogue += "Assistant: " + dict_message["content"] + "\n\n" | |
response = replicate.run( | |
llm, | |
input={ | |
"prompt": f"{string_dialogue} {prompt_input} Assistant: ", | |
"temperature": temperature, | |
"top_p": top_p, | |
"max_tokens": max_length, | |
"presence_penalty": 1.15, | |
"frequency_penalty": 0.2 | |
} | |
) | |
return response | |
# User-provided prompt | |
if prompt := st.chat_input(disabled=not replicate_api): | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
with st.chat_message("user"): | |
st.write(prompt) | |
# Generate a new response if last message is not from assistant | |
if st.session_state.messages[-1]["role"] != "assistant": | |
with st.chat_message("assistant"): | |
with st.spinner("Processing..."): | |
response = generate_llama3_response(prompt) | |
placeholder = st.empty() | |
full_response = '' | |
for item in response: | |
full_response += item | |
placeholder.markdown(full_response) | |
placeholder.markdown(full_response) | |
message = {"role": "assistant", "content": full_response} | |
st.session_state.messages.append(message) | |
# Function to convert messages to HTML | |
def messages_to_html(messages): | |
html = "<html><body>" | |
for message in messages: | |
role = "User" if message["role"] == "user" else "Assistant" | |
html += f"<p><strong>{role}:</strong> {message['content']}</p>" | |
html += "</body></html>" | |
return html | |
# Function to generate PDF report | |
def generate_pdf(description): | |
if description is None: | |
return None | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmpfile: | |
c = canvas.Canvas(tmpfile.name) | |
c.setFont("Helvetica", 12) | |
text_lines = description.split('\n') # Ensure description is not None before splitting | |
y = 750 | |
for line in text_lines: | |
c.drawString(100, y, line) | |
y -= 20 | |
c.save() | |
tmpfile.close() | |
return tmpfile.name | |
# Button to download chat history as PDF | |
if st.sidebar.button('Download Chat History as PDF'): | |
html_content = messages_to_html(st.session_state.messages) | |
pdf_filename = generate_pdf(html_content) | |
if pdf_filename: | |
with open(pdf_filename, "rb") as pdf_file: | |
st.sidebar.download_button( | |
label="Download PDF", | |
data=pdf_file, | |
file_name="chat_history.pdf", | |
mime="application/pdf" | |
) | |