import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
load_dotenv()
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two numbers.
Args:
a: first int
b: second int
"""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two numbers.
Args:
a: first int
b: second int
"""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract two numbers.
Args:
a: first int
b: second int
"""
return a - b
@tool
def divide(a: int, b: int) -> int:
"""Divide two numbers.
Args:
a: first int
b: second int
"""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Get the modulus of two numbers.
Args:
a: first int
b: second int
"""
return a % b
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia for a query and return maximum two results.
Args:
query: The search query."""
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'\n{doc.page_content}\n'
for doc in search_docs
])
return {"wiki_results": formatted_search_docs}
@tool
def web_search(query: str) -> str:
"""Search Tavily for a query and return maximum three results.
Args:
query: The search query."""
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
formatted_search_docs = "\n\n---\n\n".join(
[
f'\n{doc.page_content}\n'
for doc in search_docs
])
return {"web_results": formatted_search_docs}
@tool
def arvix_search(query: str) -> str:
"""Search Arxiv for a query and return maximum three results.
Args:
query: The search query."""
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'\n{doc.page_content[:1000]}\n'
for doc in search_docs
])
return {"arvix_results": formatted_search_docs}
system_prompt="You are a helpful assistant tasked with answering questions using a set of tools. Now, I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, do not use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, do not use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.Your answer should only start with 'FINAL ANSWER: ', then follows with the answer."
sys_msg = SystemMessage(content=system_prompt)
import pandas as pd
import ast
import chromadb
from chromadb.utils import embedding_functions
# Step 1: Read the CSV file
csv_file_path = 'embeddings.csv'
df = pd.read_csv(csv_file_path)
# Convert the embeddings from string to list
embeddings = df['embedding'].apply(ast.literal_eval).tolist()
# Convert the metadata from string to dictionary
metadata = df['metadata'].apply(ast.literal_eval).tolist()
# Create unique IDs for each embedding
ids = [str(i) for i in range(len(embeddings))]
# Step 2: Initialize ChromaDB client and create a collection
client = chromadb.Client()
collection = client.create_collection(name="my_collection")
# Step 3: Add embeddings and metadata to the collection
for embedding, meta, id in zip(embeddings, metadata, ids):
collection.add(
embeddings=[embedding],
metadatas=[meta], # Ensure metadata is a dictionary
ids=[id]
)
# Define a function to perform a similarity search
def as_retriever():
def retriever(query):
# Assuming `embeddings` is an instance of HuggingFaceEmbeddings
query_embedding = embeddings.embed_query(query)
results = collection.query(
query_embeddings=[query_embedding],
n_results=1 # Number of nearest neighbors to retrieve
)
return results
return retriever
# Create the retriever tool
create_retriever_tool = {
"retriever": as_retriever(),
"name": "Question Search",
"description": "A tool to retrieve similar questions from a vector store.",
}
tools = [
multiply,
add,
subtract,
divide,
modulus,
wiki_search,
web_search,
arvix_search,
]
# Build graph function
def build_graph(provider: str = "huggingface"):
"""Build the graph"""
# Load environment variables from .env file
if provider == "google":
# Google Gemini
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
elif provider == "huggingface":
# HuggingFace Endpoint
llm = ChatHuggingFace(
llm=HuggingFaceEndpoint(
endpoint_url="https://api-inference.huggingface.co/models/HuggingFaceTB/SmolLM2-1.7B-Instruct",
huggingfacehub_api_token=os.getenv("HF_INFERENCE_ENDPOINT") # Ensure you have this in your .env file
)
)
else:
raise ValueError("Invalid provider. Choose 'google' or 'huggingface'.")
# Bind tools to LLM
llm_with_tools = llm.bind_tools(tools)
# Node
def assistant(state: MessagesState):
"""Assistant node"""
return {"messages": [llm_with_tools.invoke(state["messages"])]}
from typing import Dict, List, Any
from langchain_huggingface import HuggingFaceEmbeddings
# Initialize the embedding model
embeddings_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
def retriever(state: Dict[str, Any]) -> Dict[str, List[HumanMessage]]:
"""Retriever node using ChromaDB for similarity search."""
# Extract the query from the state
query = state["messages"][0].content
# Generate the query embedding using the embedding model
query_embedding = embeddings_model.embed_query(query)
# Perform similarity search using ChromaDB
results = collection.query(
query_embeddings=[query_embedding],
n_results=1 # Retrieve the most similar question
)
# Extract the similar question content from the results
similar_question_content = results['documents'][0][0] # Adjust based on actual structure
# Create an example message with the similar question
example_msg = HumanMessage(
content=f"Here I provide a similar question and answer for reference: \n\n{similar_question_content}",
)
# Return the updated state with the example message
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
builder = StateGraph(MessagesState)
builder.add_node("retriever", retriever)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
builder.add_edge(START, "retriever")
builder.add_edge("retriever", "assistant")
builder.add_conditional_edges(
"assistant",
tools_condition,
)
builder.add_edge("tools", "assistant")
# Compile graph
return builder.compile()