import os from dotenv import load_dotenv from langgraph.graph import START, StateGraph, MessagesState from langgraph.prebuilt import tools_condition from langgraph.prebuilt import ToolNode from langchain_google_genai import ChatGoogleGenerativeAI from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings from langchain_community.tools.tavily_search import TavilySearchResults from langchain_community.document_loaders import WikipediaLoader from langchain_community.document_loaders import ArxivLoader from langchain_community.vectorstores import SupabaseVectorStore from langchain_core.messages import SystemMessage, HumanMessage from langchain_core.tools import tool from langchain.tools.retriever import create_retriever_tool load_dotenv() @tool def multiply(a: int, b: int) -> int: """Multiply two numbers. Args: a: first int b: second int """ return a * b @tool def add(a: int, b: int) -> int: """Add two numbers. Args: a: first int b: second int """ return a + b @tool def subtract(a: int, b: int) -> int: """Subtract two numbers. Args: a: first int b: second int """ return a - b @tool def divide(a: int, b: int) -> int: """Divide two numbers. Args: a: first int b: second int """ if b == 0: raise ValueError("Cannot divide by zero.") return a / b @tool def modulus(a: int, b: int) -> int: """Get the modulus of two numbers. Args: a: first int b: second int """ return a % b @tool def wiki_search(query: str) -> str: """Search Wikipedia for a query and return maximum two results. Args: query: The search query.""" search_docs = WikipediaLoader(query=query, load_max_docs=2).load() formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content}\n' for doc in search_docs ]) return {"wiki_results": formatted_search_docs} @tool def web_search(query: str) -> str: """Search Tavily for a query and return maximum three results. Args: query: The search query.""" search_docs = TavilySearchResults(max_results=3).invoke(query=query) formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content}\n' for doc in search_docs ]) return {"web_results": formatted_search_docs} @tool def arvix_search(query: str) -> str: """Search Arxiv for a query and return maximum three results. Args: query: The search query.""" search_docs = ArxivLoader(query=query, load_max_docs=3).load() formatted_search_docs = "\n\n---\n\n".join( [ f'\n{doc.page_content[:1000]}\n' for doc in search_docs ]) return {"arvix_results": formatted_search_docs} system_prompt="You are a helpful assistant tasked with answering questions using a set of tools. Now, I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, do not use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, do not use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.Your answer should only start with 'FINAL ANSWER: ', then follows with the answer." sys_msg = SystemMessage(content=system_prompt) import pandas as pd import ast import chromadb from chromadb.utils import embedding_functions # Step 1: Read the CSV file csv_file_path = 'embeddings.csv' df = pd.read_csv(csv_file_path) # Convert the embeddings from string to list embeddings = df['embedding'].apply(ast.literal_eval).tolist() # Convert the metadata from string to dictionary metadata = df['metadata'].apply(ast.literal_eval).tolist() # Create unique IDs for each embedding ids = [str(i) for i in range(len(embeddings))] # Step 2: Initialize ChromaDB client and create a collection client = chromadb.Client() collection = client.create_collection(name="my_collection") # Step 3: Add embeddings and metadata to the collection for embedding, meta, id in zip(embeddings, metadata, ids): collection.add( embeddings=[embedding], metadatas=[meta], # Ensure metadata is a dictionary ids=[id] ) # Define a function to perform a similarity search def as_retriever(): def retriever(query): # Assuming `embeddings` is an instance of HuggingFaceEmbeddings query_embedding = embeddings.embed_query(query) results = collection.query( query_embeddings=[query_embedding], n_results=1 # Number of nearest neighbors to retrieve ) return results return retriever # Create the retriever tool create_retriever_tool = { "retriever": as_retriever(), "name": "Question Search", "description": "A tool to retrieve similar questions from a vector store.", } tools = [ multiply, add, subtract, divide, modulus, wiki_search, web_search, arvix_search, ] # Build graph function def build_graph(provider: str = "huggingface"): """Build the graph""" # Load environment variables from .env file if provider == "google": # Google Gemini llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0) elif provider == "huggingface": # HuggingFace Endpoint llm = ChatHuggingFace( llm=HuggingFaceEndpoint( endpoint_url="https://api-inference.huggingface.co/models/HuggingFaceTB/SmolLM2-1.7B-Instruct", huggingfacehub_api_token=os.getenv("HF_INFERENCE_ENDPOINT") # Ensure you have this in your .env file ) ) else: raise ValueError("Invalid provider. Choose 'google' or 'huggingface'.") # Bind tools to LLM llm_with_tools = llm.bind_tools(tools) # Node def assistant(state: MessagesState): """Assistant node""" return {"messages": [llm_with_tools.invoke(state["messages"])]} from typing import Dict, List, Any from langchain_huggingface import HuggingFaceEmbeddings # Initialize the embedding model embeddings_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") def retriever(state: Dict[str, Any]) -> Dict[str, List[HumanMessage]]: """Retriever node using ChromaDB for similarity search.""" # Extract the query from the state query = state["messages"][0].content # Generate the query embedding using the embedding model query_embedding = embeddings_model.embed_query(query) # Perform similarity search using ChromaDB results = collection.query( query_embeddings=[query_embedding], n_results=1 # Retrieve the most similar question ) # Extract the similar question content from the results similar_question_content = results['documents'][0][0] # Adjust based on actual structure # Create an example message with the similar question example_msg = HumanMessage( content=f"Here I provide a similar question and answer for reference: \n\n{similar_question_content}", ) # Return the updated state with the example message return {"messages": [sys_msg] + state["messages"] + [example_msg]} builder = StateGraph(MessagesState) builder.add_node("retriever", retriever) builder.add_node("assistant", assistant) builder.add_node("tools", ToolNode(tools)) builder.add_edge(START, "retriever") builder.add_edge("retriever", "assistant") builder.add_conditional_edges( "assistant", tools_condition, ) builder.add_edge("tools", "assistant") # Compile graph return builder.compile()