import os import gradio as gr import requests import pandas as pd from langchain_core.messages import HumanMessage from tools import build_graph # Constants DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" class BasicAgent: def __init__(self, csv_file_path: str = "embedding_database.csv"): print("BasicAgent initialized.") self.graph = build_graph(provider="groq", csv_file_path=csv_file_path) def __call__(self, question: str) -> str: print(f"Agent received question (first 50 chars): {question[:50]}...") # Wrap the question in a HumanMessage messages = [HumanMessage(content=question)] messages = self.graph.invoke({"messages": messages}) # Extract answer and remove "FINAL ANSWER: " prefix answer = messages['messages'][-1].content if answer.startswith("FINAL ANSWER: "): return answer[14:] else: # Look for FINAL ANSWER in the response lines = answer.split('\n') for line in lines: if line.strip().startswith("FINAL ANSWER:"): return line.strip()[14:].strip() return answer def run_and_submit_all(profile: gr.OAuthProfile | None): """ Fetches all questions, runs the BasicAgent on them, submits all answers, and displays the results. """ if not profile: print("User not logged in.") return "Please Login to Hugging Face with the button.", None username = f"{profile.username}" print(f"User logged in: {username}") space_id = os.getenv("SPACE_ID") agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" if space_id else "Local Development" api_url = DEFAULT_API_URL questions_url = f"{api_url}/questions" submit_url = f"{api_url}/submit" try: agent = BasicAgent() # Make sure your CSV file is named "embeddings.csv" or update the path except Exception as e: print(f"Error instantiating agent: {e}") return f"Error initializing agent: {e}", None # Fetch Questions print(f"Fetching questions from: {questions_url}") try: response = requests.get(questions_url, timeout=15) response.raise_for_status() questions_data = response.json() if not questions_data: return "Fetched questions list is empty or invalid format.", None print(f"Fetched {len(questions_data)} questions.") except Exception as e: print(f"Error fetching questions: {e}") return f"Error fetching questions: {e}", None results_log = [] answers_payload = [] print(f"Running agent on {len(questions_data)} questions...") for item in questions_data: task_id = item.get("task_id") question_text = item.get("question") if not task_id or question_text is None: print(f"Skipping item with missing task_id or question: {item}") continue try: submitted_answer = agent(question_text) answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) results_log.append({ "Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer }) print(f"Completed task {task_id}: {submitted_answer}") except Exception as e: print(f"Error running agent on task {task_id}: {e}") results_log.append({ "Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}" }) if not answers_payload: return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) submission_data = { "username": username.strip(), "agent_code": agent_code, "answers": answers_payload } print(f"Submitting {len(answers_payload)} answers to: {submit_url}") try: response = requests.post(submit_url, json=submission_data, timeout=60) response.raise_for_status() result_data = response.json() final_status = ( f"Submission Successful!\n" f"User: {result_data.get('username')}\n" f"Overall Score: {result_data.get('score', 'N/A')}% " f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" f"Message: {result_data.get('message', 'No message received.')}" ) print("Submission successful.") results_df = pd.DataFrame(results_log) return final_status, results_df except Exception as e: print(f"Submission failed: {e}") status_message = f"Submission Failed: {e}" results_df = pd.DataFrame(results_log) return status_message, results_df with gr.Blocks() as demo: gr.Markdown("# Basic Agent Evaluation Runner") gr.Markdown(""" **Instructions:** 1. Make sure your `embeddings.csv` file is in the same directory 2. Log in to your Hugging Face account using the button below 3. Click 'Run Evaluation & Submit All Answers' to start the evaluation **Note:** The evaluation process may take several minutes depending on the number of questions. """) gr.LoginButton() run_button = gr.Button("Run Evaluation & Submit All Answers", variant="primary") status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) run_button.click( fn=run_and_submit_all, outputs=[status_output, results_table] ) if __name__ == "__main__": print("\n" + "-"*30 + " App Starting " + "-"*30) space_host = os.getenv("SPACE_HOST") space_id = os.getenv("SPACE_ID") if space_host: print(f"✅ SPACE_HOST found: {space_host}") print(f" Runtime URL: https://{space_host}.hf.space") else: print("â„šī¸ Running locally") if space_id: print(f"✅ SPACE_ID found: {space_id}") print(f" Repo URL: https://huggingface.co/spaces/{space_id}") print("-"*(60 + len(" App Starting ")) + "\n") print("Launching Gradio Interface...") demo.launch(debug=True, share=False)