Update app.py
Browse files
app.py
CHANGED
@@ -2,122 +2,118 @@ import os
|
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
import pandas as pd
|
5 |
-
|
6 |
-
from tools import build_graph
|
7 |
|
8 |
-
#
|
|
|
|
|
|
|
|
|
|
|
9 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
def __call__(self, question: str) -> str:
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
return answer[14:]
|
28 |
-
else:
|
29 |
-
# Look for FINAL ANSWER in the response
|
30 |
-
lines = answer.split('\n')
|
31 |
-
for line in lines:
|
32 |
-
if line.strip().startswith("FINAL ANSWER:"):
|
33 |
-
return line.strip()[14:].strip()
|
34 |
-
return answer
|
35 |
|
|
|
36 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
37 |
-
"""
|
38 |
-
Fetches all questions, runs the BasicAgent on them, submits all answers,
|
39 |
-
and displays the results.
|
40 |
-
"""
|
41 |
-
if not profile:
|
42 |
-
print("User not logged in.")
|
43 |
-
return "Please Login to Hugging Face with the button.", None
|
44 |
-
|
45 |
-
username = f"{profile.username}"
|
46 |
-
print(f"User logged in: {username}")
|
47 |
-
|
48 |
space_id = os.getenv("SPACE_ID")
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
51 |
api_url = DEFAULT_API_URL
|
52 |
questions_url = f"{api_url}/questions"
|
53 |
submit_url = f"{api_url}/submit"
|
54 |
-
|
55 |
try:
|
56 |
-
agent =
|
57 |
except Exception as e:
|
58 |
-
print(f"Error instantiating agent: {e}")
|
59 |
return f"Error initializing agent: {e}", None
|
60 |
-
|
61 |
-
|
62 |
-
print(
|
|
|
63 |
try:
|
64 |
response = requests.get(questions_url, timeout=15)
|
65 |
response.raise_for_status()
|
66 |
questions_data = response.json()
|
67 |
-
|
68 |
if not questions_data:
|
69 |
return "Fetched questions list is empty or invalid format.", None
|
70 |
-
|
71 |
print(f"Fetched {len(questions_data)} questions.")
|
72 |
except Exception as e:
|
73 |
-
print(f"Error fetching questions: {e}")
|
74 |
return f"Error fetching questions: {e}", None
|
75 |
-
|
76 |
results_log = []
|
77 |
answers_payload = []
|
78 |
-
print(f"Running agent on {len(questions_data)} questions...")
|
79 |
-
|
80 |
for item in questions_data:
|
81 |
task_id = item.get("task_id")
|
82 |
question_text = item.get("question")
|
83 |
-
|
84 |
if not task_id or question_text is None:
|
85 |
-
print(f"Skipping item with missing task_id or question: {item}")
|
86 |
continue
|
87 |
-
|
88 |
try:
|
89 |
submitted_answer = agent(question_text)
|
90 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
91 |
-
results_log.append({
|
92 |
-
"Task ID": task_id,
|
93 |
-
"Question": question_text,
|
94 |
-
"Submitted Answer": submitted_answer
|
95 |
-
})
|
96 |
-
print(f"Completed task {task_id}: {submitted_answer}")
|
97 |
-
|
98 |
except Exception as e:
|
99 |
-
|
100 |
-
|
101 |
-
"Task ID": task_id,
|
102 |
-
"Question": question_text,
|
103 |
-
"Submitted Answer": f"AGENT ERROR: {e}"
|
104 |
-
})
|
105 |
-
|
106 |
if not answers_payload:
|
107 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
108 |
-
|
109 |
-
submission_data = {
|
110 |
-
"username": username.strip(),
|
111 |
-
"agent_code": agent_code,
|
112 |
-
"answers": answers_payload
|
113 |
-
}
|
114 |
-
|
115 |
-
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
|
116 |
try:
|
117 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
118 |
response.raise_for_status()
|
119 |
result_data = response.json()
|
120 |
-
|
121 |
final_status = (
|
122 |
f"Submission Successful!\n"
|
123 |
f"User: {result_data.get('username')}\n"
|
@@ -125,56 +121,57 @@ def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
125 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
126 |
f"Message: {result_data.get('message', 'No message received.')}"
|
127 |
)
|
128 |
-
|
129 |
-
print("Submission successful.")
|
130 |
-
results_df = pd.DataFrame(results_log)
|
131 |
-
return final_status, results_df
|
132 |
-
|
133 |
except Exception as e:
|
134 |
-
|
135 |
-
status_message = f"Submission Failed: {e}"
|
136 |
-
results_df = pd.DataFrame(results_log)
|
137 |
-
return status_message, results_df
|
138 |
|
|
|
139 |
with gr.Blocks() as demo:
|
140 |
-
gr.Markdown("#
|
|
|
141 |
gr.Markdown("""
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
**Note:** The evaluation process may take several minutes depending on the number of questions.
|
148 |
""")
|
149 |
-
|
150 |
gr.LoginButton()
|
151 |
-
|
152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
154 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
155 |
-
|
156 |
run_button.click(
|
157 |
fn=run_and_submit_all,
|
158 |
outputs=[status_output, results_table]
|
159 |
)
|
160 |
|
|
|
161 |
if __name__ == "__main__":
|
162 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
print(f"
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
else:
|
171 |
-
print("ℹ️
|
172 |
-
|
173 |
-
if space_id:
|
174 |
-
print(f"✅ SPACE_ID found: {space_id}")
|
175 |
-
print(f" Repo URL: https://huggingface.co/spaces/{space_id}")
|
176 |
-
|
177 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
178 |
-
print("Launching Gradio Interface...")
|
179 |
-
|
180 |
-
demo.launch(debug=True, share=False)
|
|
|
2 |
import gradio as gr
|
3 |
import requests
|
4 |
import pandas as pd
|
5 |
+
import re
|
|
|
6 |
|
7 |
+
# --- Ensure HF Hub token is available in the Space ---
|
8 |
+
token = gr.get_oauth_token()
|
9 |
+
if token:
|
10 |
+
os.environ["agents_token"] = token.token
|
11 |
+
|
12 |
+
# --- Constants ---
|
13 |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
|
14 |
|
15 |
+
# --- LangChain Agent Definition ---
|
16 |
+
from langchain.llms import HuggingFaceHub
|
17 |
+
from langchain.agents import initialize_agent, Tool
|
18 |
+
from langchain.agents.agent_types import AgentType
|
19 |
+
from langchain.tools import tool
|
20 |
+
from duckduckgo_search import DDGS
|
21 |
+
|
22 |
+
@tool
|
23 |
+
def search_web(query: str) -> str:
|
24 |
+
with DDGS() as ddgs:
|
25 |
+
results = list(ddgs.text(query, max_results=3))
|
26 |
+
return results[0]["body"] if results else "No result"
|
27 |
+
|
28 |
+
@tool
|
29 |
+
def run_code_snippet(code: str) -> str:
|
30 |
+
try:
|
31 |
+
local_env = {}
|
32 |
+
exec(code, {}, local_env)
|
33 |
+
result = [v for v in local_env.values() if isinstance(v, (int, float, str))]
|
34 |
+
return str(result[0]) if result else "0"
|
35 |
+
except Exception as e:
|
36 |
+
return f"Error: {str(e)}"
|
37 |
+
|
38 |
+
class GAIAAgent:
|
39 |
+
def __init__(self):
|
40 |
+
print("Initializing LangChain agent with Hugging Face model...")
|
41 |
+
self.llm = HuggingFaceHub(
|
42 |
+
repo_id="google/flan-t5-xl", # You can change this to another HF model
|
43 |
+
model_kwargs={"temperature": 0.3, "max_length": 256}
|
44 |
+
)
|
45 |
+
self.tools = [search_web, run_code_snippet]
|
46 |
+
self.agent = initialize_agent(
|
47 |
+
self.tools,
|
48 |
+
self.llm,
|
49 |
+
agent_type=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
|
50 |
+
verbose=True
|
51 |
+
)
|
52 |
+
|
53 |
def __call__(self, question: str) -> str:
|
54 |
+
try:
|
55 |
+
result = self.agent.run(question)
|
56 |
+
return f"FINAL ANSWER: {self.clean_answer(result)}"
|
57 |
+
except Exception as e:
|
58 |
+
return f"FINAL ANSWER: Error: {e}"
|
59 |
+
|
60 |
+
def clean_answer(self, ans: str) -> str:
|
61 |
+
ans = re.sub(r"[\$,%]", "", ans)
|
62 |
+
return ans.strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
+
# --- Evaluation & Submission Pipeline ---
|
65 |
def run_and_submit_all(profile: gr.OAuthProfile | None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
space_id = os.getenv("SPACE_ID")
|
67 |
+
if profile:
|
68 |
+
username = f"{profile.username}"
|
69 |
+
print(f"User logged in: {username}")
|
70 |
+
else:
|
71 |
+
return "Please Login to Hugging Face with the button.", None
|
72 |
+
|
73 |
api_url = DEFAULT_API_URL
|
74 |
questions_url = f"{api_url}/questions"
|
75 |
submit_url = f"{api_url}/submit"
|
76 |
+
|
77 |
try:
|
78 |
+
agent = GAIAAgent()
|
79 |
except Exception as e:
|
|
|
80 |
return f"Error initializing agent: {e}", None
|
81 |
+
|
82 |
+
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
|
83 |
+
print(agent_code)
|
84 |
+
|
85 |
try:
|
86 |
response = requests.get(questions_url, timeout=15)
|
87 |
response.raise_for_status()
|
88 |
questions_data = response.json()
|
|
|
89 |
if not questions_data:
|
90 |
return "Fetched questions list is empty or invalid format.", None
|
|
|
91 |
print(f"Fetched {len(questions_data)} questions.")
|
92 |
except Exception as e:
|
|
|
93 |
return f"Error fetching questions: {e}", None
|
94 |
+
|
95 |
results_log = []
|
96 |
answers_payload = []
|
|
|
|
|
97 |
for item in questions_data:
|
98 |
task_id = item.get("task_id")
|
99 |
question_text = item.get("question")
|
|
|
100 |
if not task_id or question_text is None:
|
|
|
101 |
continue
|
|
|
102 |
try:
|
103 |
submitted_answer = agent(question_text)
|
104 |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
|
105 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
except Exception as e:
|
107 |
+
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
|
108 |
+
|
|
|
|
|
|
|
|
|
|
|
109 |
if not answers_payload:
|
110 |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
|
111 |
+
|
112 |
+
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
try:
|
114 |
response = requests.post(submit_url, json=submission_data, timeout=60)
|
115 |
response.raise_for_status()
|
116 |
result_data = response.json()
|
|
|
117 |
final_status = (
|
118 |
f"Submission Successful!\n"
|
119 |
f"User: {result_data.get('username')}\n"
|
|
|
121 |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
|
122 |
f"Message: {result_data.get('message', 'No message received.')}"
|
123 |
)
|
124 |
+
return final_status, pd.DataFrame(results_log)
|
|
|
|
|
|
|
|
|
125 |
except Exception as e:
|
126 |
+
return f"Submission Failed: {e}", pd.DataFrame(results_log)
|
|
|
|
|
|
|
127 |
|
128 |
+
# --- Gradio UI ---
|
129 |
with gr.Blocks() as demo:
|
130 |
+
gr.Markdown("# GAIA Agent Evaluation Runner")
|
131 |
+
|
132 |
gr.Markdown("""
|
133 |
+
**Instructions:**
|
134 |
+
1. Clone this space and modify the agent logic as needed.
|
135 |
+
2. Log in to Hugging Face to associate your submission.
|
136 |
+
3. Click the button below to fetch questions, run your agent, and submit results.
|
|
|
|
|
137 |
""")
|
138 |
+
|
139 |
gr.LoginButton()
|
140 |
+
|
141 |
+
gr.Markdown("## 🔍 Try a Question Preview")
|
142 |
+
preview_input = gr.Textbox(label="Your GAIA-style question")
|
143 |
+
preview_output = gr.Textbox(label="Agent's Response", lines=2)
|
144 |
+
preview_button = gr.Button("Preview Answer")
|
145 |
+
preview_button.click(lambda q: GAIAAgent()(q), inputs=preview_input, outputs=preview_output)
|
146 |
+
|
147 |
+
run_button = gr.Button("Run Evaluation & Submit All Answers")
|
148 |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
|
149 |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
|
150 |
+
|
151 |
run_button.click(
|
152 |
fn=run_and_submit_all,
|
153 |
outputs=[status_output, results_table]
|
154 |
)
|
155 |
|
156 |
+
# --- Main Entry ---
|
157 |
if __name__ == "__main__":
|
158 |
print("\n" + "-"*30 + " App Starting " + "-"*30)
|
159 |
+
space_host_startup = os.getenv("SPACE_HOST")
|
160 |
+
space_id_startup = os.getenv("SPACE_ID")
|
161 |
+
|
162 |
+
if space_host_startup:
|
163 |
+
print(f"✅ SPACE_HOST found: {space_host_startup}")
|
164 |
+
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
|
165 |
+
else:
|
166 |
+
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
|
167 |
+
|
168 |
+
if space_id_startup:
|
169 |
+
print(f"✅ SPACE_ID found: {space_id_startup}")
|
170 |
+
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
|
171 |
+
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
|
172 |
else:
|
173 |
+
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
|
174 |
+
|
|
|
|
|
|
|
|
|
175 |
print("-"*(60 + len(" App Starting ")) + "\n")
|
176 |
+
print("Launching Gradio Interface for GAIA Agent Evaluation...")
|
177 |
+
demo.launch(debug=True, share=False)
|
|