|
import os |
|
from dotenv import load_dotenv |
|
from langgraph.graph import START, StateGraph, MessagesState |
|
from langgraph.prebuilt import tools_condition |
|
from langgraph.prebuilt import ToolNode |
|
from langchain_google_genai import ChatGoogleGenerativeAI |
|
|
|
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings |
|
from langchain_community.tools.tavily_search import TavilySearchResults |
|
from langchain_community.document_loaders import WikipediaLoader |
|
from langchain_community.document_loaders import ArxivLoader |
|
from langchain_community.vectorstores import SupabaseVectorStore |
|
from langchain_core.messages import SystemMessage, HumanMessage |
|
from langchain_core.tools import tool |
|
from langchain.tools.retriever import create_retriever_tool |
|
|
|
|
|
load_dotenv() |
|
|
|
@tool |
|
def multiply(a: int, b: int) -> int: |
|
"""Multiply two numbers. |
|
Args: |
|
a: first int |
|
b: second int |
|
""" |
|
return a * b |
|
|
|
@tool |
|
def add(a: int, b: int) -> int: |
|
"""Add two numbers. |
|
|
|
Args: |
|
a: first int |
|
b: second int |
|
""" |
|
return a + b |
|
|
|
@tool |
|
def subtract(a: int, b: int) -> int: |
|
"""Subtract two numbers. |
|
|
|
Args: |
|
a: first int |
|
b: second int |
|
""" |
|
return a - b |
|
|
|
@tool |
|
def divide(a: int, b: int) -> int: |
|
"""Divide two numbers. |
|
|
|
Args: |
|
a: first int |
|
b: second int |
|
""" |
|
if b == 0: |
|
raise ValueError("Cannot divide by zero.") |
|
return a / b |
|
|
|
@tool |
|
def modulus(a: int, b: int) -> int: |
|
"""Get the modulus of two numbers. |
|
|
|
Args: |
|
a: first int |
|
b: second int |
|
""" |
|
return a % b |
|
|
|
@tool |
|
def wiki_search(query: str) -> str: |
|
"""Search Wikipedia for a query and return maximum 2 results. |
|
|
|
Args: |
|
query: The search query.""" |
|
search_docs = WikipediaLoader(query=query, load_max_docs=2).load() |
|
formatted_search_docs = "\n\n---\n\n".join( |
|
[ |
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' |
|
for doc in search_docs |
|
]) |
|
return {"wiki_results": formatted_search_docs} |
|
|
|
@tool |
|
def web_search(query: str) -> str: |
|
"""Search Tavily for a query and return maximum 3 results. |
|
|
|
Args: |
|
query: The search query.""" |
|
search_docs = TavilySearchResults(max_results=3).invoke(query=query) |
|
formatted_search_docs = "\n\n---\n\n".join( |
|
[ |
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>' |
|
for doc in search_docs |
|
]) |
|
return {"web_results": formatted_search_docs} |
|
|
|
@tool |
|
def arvix_search(query: str) -> str: |
|
"""Search Arxiv for a query and return maximum 3 result. |
|
|
|
Args: |
|
query: The search query.""" |
|
search_docs = ArxivLoader(query=query, load_max_docs=3).load() |
|
formatted_search_docs = "\n\n---\n\n".join( |
|
[ |
|
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>' |
|
for doc in search_docs |
|
]) |
|
return {"arvix_results": formatted_search_docs} |
|
|
|
|
|
|
|
|
|
|
|
|
|
system_prompt="You are a helpful assistant tasked with answering questions using a set of tools. Now, I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, do not use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, do not use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.Your answer should only start with 'FINAL ANSWER: ', then follows with the answer." |
|
|
|
sys_msg = SystemMessage(content=system_prompt) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import pandas as pd |
|
import ast |
|
import chromadb |
|
from chromadb.utils import embedding_functions |
|
|
|
|
|
csv_file_path = '/home/chen/AGENTS COURSE/emb_docs.csv' |
|
df = pd.read_csv(csv_file_path) |
|
|
|
|
|
embeddings = df['embedding'].apply(ast.literal_eval).tolist() |
|
|
|
|
|
metadata = df['metadata'].apply(ast.literal_eval).tolist() |
|
|
|
|
|
ids = [str(i) for i in range(len(embeddings))] |
|
|
|
|
|
client = chromadb.Client() |
|
collection = client.create_collection(name="my_collection") |
|
|
|
|
|
for embedding, meta, id in zip(embeddings, metadata, ids): |
|
collection.add( |
|
embeddings=[embedding], |
|
metadatas=[meta], |
|
ids=[id] |
|
) |
|
|
|
|
|
def as_retriever(): |
|
def retriever(query): |
|
|
|
query_embedding = embeddings.embed_query(query) |
|
results = collection.query( |
|
query_embeddings=[query_embedding], |
|
n_results=1 |
|
) |
|
return results |
|
return retriever |
|
|
|
|
|
create_retriever_tool = { |
|
"retriever": as_retriever(), |
|
"name": "Question Search", |
|
"description": "A tool to retrieve similar questions from a vector store.", |
|
} |
|
|
|
|
|
tools = [ |
|
multiply, |
|
add, |
|
subtract, |
|
divide, |
|
modulus, |
|
wiki_search, |
|
web_search, |
|
arvix_search, |
|
] |
|
|
|
|
|
def build_graph(provider: str = "huggingface"): |
|
"""Build the graph""" |
|
|
|
if provider == "google": |
|
|
|
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0) |
|
elif provider == "huggingface": |
|
|
|
llm = ChatHuggingFace( |
|
llm=HuggingFaceEndpoint( |
|
endpoint_url="https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.3", |
|
huggingfacehub_api_token=os.getenv("HUGGINGFACEHUB_API_TOKEN") |
|
) |
|
) |
|
else: |
|
raise ValueError("Invalid provider. Choose 'google' or 'huggingface'.") |
|
|
|
|
|
llm_with_tools = llm.bind_tools(tools) |
|
|
|
|
|
def assistant(state: MessagesState): |
|
"""Assistant node""" |
|
return {"messages": [llm_with_tools.invoke(state["messages"])]} |
|
from typing import Dict, List, Any |
|
|
|
from langchain_huggingface import HuggingFaceEmbeddings |
|
|
|
|
|
embeddings_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") |
|
|
|
def retriever(state: Dict[str, Any]) -> Dict[str, List[HumanMessage]]: |
|
"""Retriever node using ChromaDB for similarity search.""" |
|
|
|
query = state["messages"][0].content |
|
|
|
|
|
query_embedding = embeddings_model.embed_query(query) |
|
|
|
|
|
results = collection.query( |
|
query_embeddings=[query_embedding], |
|
n_results=1 |
|
) |
|
|
|
|
|
similar_question_content = results['documents'][0][0] |
|
|
|
|
|
example_msg = HumanMessage( |
|
content=f"Here I provide a similar question and answer for reference: \n\n{similar_question_content}", |
|
) |
|
|
|
|
|
return {"messages": [sys_msg] + state["messages"] + [example_msg]} |
|
|
|
|
|
|
|
builder = StateGraph(MessagesState) |
|
builder.add_node("retriever", retriever) |
|
builder.add_node("assistant", assistant) |
|
builder.add_node("tools", ToolNode(tools)) |
|
builder.add_edge(START, "retriever") |
|
builder.add_edge("retriever", "assistant") |
|
builder.add_conditional_edges( |
|
"assistant", |
|
tools_condition, |
|
) |
|
builder.add_edge("tools", "assistant") |
|
|
|
|
|
return builder.compile() |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?" |
|
|
|
graph = build_graph(provider="huggingface") |
|
|
|
messages = [HumanMessage(content=question)] |
|
messages = graph.invoke({"messages": messages}) |
|
for m in messages["messages"]: |
|
m.pretty_print() |