File size: 9,804 Bytes
6e46110 692591b 5ca1799 692591b 5ca1799 692591b 5ca1799 692591b 5ca1799 692591b 5ca1799 692591b 5ca1799 692591b 5ca1799 692591b 5ca1799 692591b 5ca1799 692591b 5ca1799 692591b 5ca1799 692591b 5ca1799 692591b 5ca1799 692591b 5ca1799 692591b 5ca1799 692591b 5ca1799 692591b 5ca1799 692591b 5ca1799 aca9f26 5ca1799 7ca0b04 5ca1799 f003228 5ca1799 dcbda4c 5ca1799 dcbda4c 5ca1799 1da6df4 5ca1799 04f9b43 5ca1799 dcbda4c 5ca1799 aca9f26 5ca1799 692591b 5ca1799 692591b 5ca1799 692591b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
# from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
# from supabase.client import Client, create_client
load_dotenv()
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two numbers.
Args:
a: first int
b: second int
"""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two numbers.
Args:
a: first int
b: second int
"""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract two numbers.
Args:
a: first int
b: second int
"""
return a - b
@tool
def divide(a: int, b: int) -> int:
"""Divide two numbers.
Args:
a: first int
b: second int
"""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Get the modulus of two numbers.
Args:
a: first int
b: second int
"""
return a % b
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia for a query and return maximum 2 results.
Args:
query: The search query."""
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
])
return {"wiki_results": formatted_search_docs}
@tool
def web_search(query: str) -> str:
"""Search Tavily for a query and return maximum 3 results.
Args:
query: The search query."""
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs
])
return {"web_results": formatted_search_docs}
@tool
def arvix_search(query: str) -> str:
"""Search Arxiv for a query and return maximum 3 result.
Args:
query: The search query."""
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
formatted_search_docs = "\n\n---\n\n".join(
[
f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
for doc in search_docs
])
return {"arvix_results": formatted_search_docs}
# load the system prompt from the file
# with open("system_prompt.txt", "r", encoding="utf-8") as f:
# system_prompt = f.read()
system_prompt="You are a helpful assistant tasked with answering questions using a set of tools. Now, I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, do not use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, do not use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.Your answer should only start with 'FINAL ANSWER: ', then follows with the answer."
# System message
sys_msg = SystemMessage(content=system_prompt)
# build a retriever
# embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
# supabase: Client = create_client(
# os.environ.get("SUPABASE_URL"),
# os.environ.get("SUPABASE_SERVICE_KEY"))
# vector_store = SupabaseVectorStore(
# client=supabase,
# embedding= embeddings,
# table_name="documents",
# query_name="match_documents_langchain",
# )
# create_retriever_tool = create_retriever_tool(
# retriever=vector_store.as_retriever(),
# name="Question Search",
# description="A tool to retrieve similar questions from a vector store.",
# )
import pandas as pd
import ast
import chromadb
from chromadb.utils import embedding_functions
# Step 1: Read the CSV file
csv_file_path = '/home/chen/AGENTS COURSE/emb_docs.csv'
df = pd.read_csv(csv_file_path)
# Convert the embeddings from string to list
embeddings = df['embedding'].apply(ast.literal_eval).tolist()
# Convert the metadata from string to dictionary
metadata = df['metadata'].apply(ast.literal_eval).tolist()
# Create unique IDs for each embedding
ids = [str(i) for i in range(len(embeddings))]
# Step 2: Initialize ChromaDB client and create a collection
client = chromadb.Client()
collection = client.create_collection(name="my_collection")
# Step 3: Add embeddings and metadata to the collection
for embedding, meta, id in zip(embeddings, metadata, ids):
collection.add(
embeddings=[embedding],
metadatas=[meta], # Ensure metadata is a dictionary
ids=[id]
)
# Define a function to perform a similarity search
def as_retriever():
def retriever(query):
# Assuming `embeddings` is an instance of HuggingFaceEmbeddings
query_embedding = embeddings.embed_query(query)
results = collection.query(
query_embeddings=[query_embedding],
n_results=1 # Number of nearest neighbors to retrieve
)
return results
return retriever
# Create the retriever tool
create_retriever_tool = {
"retriever": as_retriever(),
"name": "Question Search",
"description": "A tool to retrieve similar questions from a vector store.",
}
tools = [
multiply,
add,
subtract,
divide,
modulus,
wiki_search,
web_search,
arvix_search,
]
# Build graph function
def build_graph(provider: str = "huggingface"):
"""Build the graph"""
# Load environment variables from .env file
if provider == "google":
# Google Gemini
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
elif provider == "huggingface":
# HuggingFace Endpoint
llm = ChatHuggingFace(
llm=HuggingFaceEndpoint(
endpoint_url="https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.3",
huggingfacehub_api_token=os.getenv("HUGGINGFACEHUB_API_TOKEN") # Ensure you have this in your .env file
)
)
else:
raise ValueError("Invalid provider. Choose 'google' or 'huggingface'.")
# Bind tools to LLM
llm_with_tools = llm.bind_tools(tools)
# Node
def assistant(state: MessagesState):
"""Assistant node"""
return {"messages": [llm_with_tools.invoke(state["messages"])]}
from typing import Dict, List, Any
from langchain_huggingface import HuggingFaceEmbeddings
# Initialize the embedding model
embeddings_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
def retriever(state: Dict[str, Any]) -> Dict[str, List[HumanMessage]]:
"""Retriever node using ChromaDB for similarity search."""
# Extract the query from the state
query = state["messages"][0].content
# Generate the query embedding using the embedding model
query_embedding = embeddings_model.embed_query(query)
# Perform similarity search using ChromaDB
results = collection.query(
query_embeddings=[query_embedding],
n_results=1 # Retrieve the most similar question
)
# Extract the similar question content from the results
similar_question_content = results['documents'][0][0] # Adjust based on actual structure
# Create an example message with the similar question
example_msg = HumanMessage(
content=f"Here I provide a similar question and answer for reference: \n\n{similar_question_content}",
)
# Return the updated state with the example message
return {"messages": [sys_msg] + state["messages"] + [example_msg]}
builder = StateGraph(MessagesState)
builder.add_node("retriever", retriever)
builder.add_node("assistant", assistant)
builder.add_node("tools", ToolNode(tools))
builder.add_edge(START, "retriever")
builder.add_edge("retriever", "assistant")
builder.add_conditional_edges(
"assistant",
tools_condition,
)
builder.add_edge("tools", "assistant")
# Compile graph
return builder.compile()
# test
if __name__ == "__main__":
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
# Build the graph
graph = build_graph(provider="huggingface")
# Run the graph
messages = [HumanMessage(content=question)]
messages = graph.invoke({"messages": messages})
for m in messages["messages"]:
m.pretty_print() |