File size: 9,804 Bytes
6e46110
692591b
 
5ca1799
 
692591b
5ca1799
 
692591b
5ca1799
 
 
692591b
 
5ca1799
 
692591b
 
 
 
 
5ca1799
 
 
 
 
692591b
 
 
 
5ca1799
 
 
 
 
 
692591b
 
 
 
5ca1799
 
 
 
 
 
692591b
 
 
5ca1799
 
 
 
 
 
 
692591b
 
 
 
 
 
5ca1799
 
 
 
 
 
692591b
 
 
 
5ca1799
 
 
 
692591b
 
5ca1799
 
 
 
 
692591b
 
 
5ca1799
 
 
 
692591b
 
5ca1799
 
 
 
 
692591b
 
5ca1799
 
 
 
 
692591b
 
5ca1799
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
692591b
5ca1799
 
 
 
 
 
 
 
692591b
 
 
 
 
 
 
 
 
 
5ca1799
692591b
 
5ca1799
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aca9f26
5ca1799
 
7ca0b04
5ca1799
 
 
 
 
f003228
5ca1799
dcbda4c
5ca1799
 
dcbda4c
5ca1799
 
 
 
1da6df4
5ca1799
 
04f9b43
5ca1799
 
 
 
dcbda4c
 
5ca1799
 
 
 
 
 
 
aca9f26
5ca1799
 
692591b
5ca1799
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
692591b
 
5ca1799
 
692591b
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
# from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
# from supabase.client import Client, create_client

load_dotenv()

@tool
def multiply(a: int, b: int) -> int:
    """Multiply two numbers.
    Args:
        a: first int
        b: second int
    """
    return a * b

@tool
def add(a: int, b: int) -> int:
    """Add two numbers.
    
    Args:
        a: first int
        b: second int
    """
    return a + b

@tool
def subtract(a: int, b: int) -> int:
    """Subtract two numbers.
    
    Args:
        a: first int
        b: second int
    """
    return a - b

@tool
def divide(a: int, b: int) -> int:
    """Divide two numbers.
    
    Args:
        a: first int
        b: second int
    """
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b

@tool
def modulus(a: int, b: int) -> int:
    """Get the modulus of two numbers.
    
    Args:
        a: first int
        b: second int
    """
    return a % b

@tool
def wiki_search(query: str) -> str:
    """Search Wikipedia for a query and return maximum 2 results.
    
    Args:
        query: The search query."""
    search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
            for doc in search_docs
        ])
    return {"wiki_results": formatted_search_docs}

@tool
def web_search(query: str) -> str:
    """Search Tavily for a query and return maximum 3 results.
    
    Args:
        query: The search query."""
    search_docs = TavilySearchResults(max_results=3).invoke(query=query)
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
            for doc in search_docs
        ])
    return {"web_results": formatted_search_docs}

@tool
def arvix_search(query: str) -> str:
    """Search Arxiv for a query and return maximum 3 result.
    
    Args:
        query: The search query."""
    search_docs = ArxivLoader(query=query, load_max_docs=3).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
            for doc in search_docs
        ])
    return {"arvix_results": formatted_search_docs}



# load the system prompt from the file
# with open("system_prompt.txt", "r", encoding="utf-8") as f:
#     system_prompt = f.read()
system_prompt="You are a helpful assistant tasked with answering questions using a set of tools. Now, I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, do not use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, do not use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.Your answer should only start with 'FINAL ANSWER: ', then follows with the answer."
# System message
sys_msg = SystemMessage(content=system_prompt)

# build a retriever
# embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") #  dim=768
# supabase: Client = create_client(
#     os.environ.get("SUPABASE_URL"), 
#     os.environ.get("SUPABASE_SERVICE_KEY"))
# vector_store = SupabaseVectorStore(
#     client=supabase,
#     embedding= embeddings,
#     table_name="documents",
#     query_name="match_documents_langchain",
# )
# create_retriever_tool = create_retriever_tool(
#     retriever=vector_store.as_retriever(),
#     name="Question Search",
#     description="A tool to retrieve similar questions from a vector store.",
# )

import pandas as pd
import ast
import chromadb
from chromadb.utils import embedding_functions

# Step 1: Read the CSV file
csv_file_path = '/home/chen/AGENTS COURSE/emb_docs.csv'
df = pd.read_csv(csv_file_path)

# Convert the embeddings from string to list
embeddings = df['embedding'].apply(ast.literal_eval).tolist()

# Convert the metadata from string to dictionary
metadata = df['metadata'].apply(ast.literal_eval).tolist()

# Create unique IDs for each embedding
ids = [str(i) for i in range(len(embeddings))]

# Step 2: Initialize ChromaDB client and create a collection
client = chromadb.Client()
collection = client.create_collection(name="my_collection")

# Step 3: Add embeddings and metadata to the collection
for embedding, meta, id in zip(embeddings, metadata, ids):
    collection.add(
        embeddings=[embedding],
        metadatas=[meta],  # Ensure metadata is a dictionary
        ids=[id]
    )

# Define a function to perform a similarity search
def as_retriever():
    def retriever(query):
        # Assuming `embeddings` is an instance of HuggingFaceEmbeddings
        query_embedding = embeddings.embed_query(query)
        results = collection.query(
            query_embeddings=[query_embedding],
            n_results=1  # Number of nearest neighbors to retrieve
        )
        return results
    return retriever

# Create the retriever tool
create_retriever_tool = {
    "retriever": as_retriever(),
    "name": "Question Search",
    "description": "A tool to retrieve similar questions from a vector store.",
}


tools = [
    multiply,
    add,
    subtract,
    divide,
    modulus,
    wiki_search,
    web_search,
    arvix_search,
]

# Build graph function
def build_graph(provider: str = "huggingface"):
    """Build the graph"""
    # Load environment variables from .env file
    if provider == "google":
        # Google Gemini
        llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
    elif provider == "huggingface":
        # HuggingFace Endpoint
        llm = ChatHuggingFace(
            llm=HuggingFaceEndpoint(
                endpoint_url="https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.3",
                huggingfacehub_api_token=os.getenv("HUGGINGFACEHUB_API_TOKEN")  # Ensure you have this in your .env file
            )
        )
    else:
        raise ValueError("Invalid provider. Choose 'google' or 'huggingface'.")

    # Bind tools to LLM
    llm_with_tools = llm.bind_tools(tools)

    # Node
    def assistant(state: MessagesState):
        """Assistant node"""
        return {"messages": [llm_with_tools.invoke(state["messages"])]}
    from typing import Dict, List, Any

    from langchain_huggingface import HuggingFaceEmbeddings

    # Initialize the embedding model
    embeddings_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")

    def retriever(state: Dict[str, Any]) -> Dict[str, List[HumanMessage]]:
        """Retriever node using ChromaDB for similarity search."""
        # Extract the query from the state
        query = state["messages"][0].content

        # Generate the query embedding using the embedding model
        query_embedding = embeddings_model.embed_query(query)

        # Perform similarity search using ChromaDB
        results = collection.query(
            query_embeddings=[query_embedding],
            n_results=1  # Retrieve the most similar question
        )

        # Extract the similar question content from the results
        similar_question_content = results['documents'][0][0]  # Adjust based on actual structure

        # Create an example message with the similar question
        example_msg = HumanMessage(
            content=f"Here I provide a similar question and answer for reference: \n\n{similar_question_content}",
        )

        # Return the updated state with the example message
        return {"messages": [sys_msg] + state["messages"] + [example_msg]}



    builder = StateGraph(MessagesState)
    builder.add_node("retriever", retriever)
    builder.add_node("assistant", assistant)
    builder.add_node("tools", ToolNode(tools))
    builder.add_edge(START, "retriever")
    builder.add_edge("retriever", "assistant")
    builder.add_conditional_edges(
        "assistant",
        tools_condition,
    )
    builder.add_edge("tools", "assistant")

    # Compile graph
    return builder.compile()


# test
if __name__ == "__main__":
    question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
    # Build the graph
    graph = build_graph(provider="huggingface")
    # Run the graph
    messages = [HumanMessage(content=question)]
    messages = graph.invoke({"messages": messages})
    for m in messages["messages"]:
        m.pretty_print()