File size: 7,587 Bytes
692591b
6e46110
692591b
 
6e46110
692591b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0a2b8d
692591b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aca9f26
 
 
926c41e
aca9f26
692591b
 
 
 
 
 
 
869a8d8
 
 
 
926c41e
869a8d8
 
 
aca9f26
692591b
 
 
aca9f26
 
 
 
692591b
aca9f26
692591b
aca9f26
 
 
 
 
692591b
aca9f26
 
692591b
aca9f26
 
 
 
 
692591b
aca9f26
 
 
 
 
 
 
692591b
aca9f26
 
692591b
 
 
 
 
 
926c41e
692591b
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
"""LangGraph Agent with CSV-based Vector Store"""
import os
import ast
import pandas as pd
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition, ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool

load_dotenv()

# Math tools
@tool
def multiply(a: int, b: int) -> int:
    """Multiply two numbers."""
    return a * b

@tool
def add(a: int, b: int) -> int:
    """Add two numbers."""
    return a + b

@tool
def subtract(a: int, b: int) -> int:
    """Subtract two numbers."""
    return a - b

@tool
def divide(a: int, b: int) -> float:
    """Divide two numbers."""
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b

@tool
def modulus(a: int, b: int) -> int:
    """Get the modulus of two numbers."""
    return a % b

# Search tools
@tool
def wiki_search(query: str) -> str:
    """Search Wikipedia for a query and return maximum 2 results."""
    search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
         for doc in search_docs])
    return formatted_search_docs

@tool
def web_search(query: str) -> str:
    """Search Tavily for a query and return maximum 3 results."""
    search_docs = TavilySearchResults(max_results=3).invoke(query=query)
    formatted_search_docs = "\n\n---\n\n".join(
        [f'<Document source="{doc.get("url", "")}" title="{doc.get("title", "")}"/>\n{doc.get("content", "")}\n</Document>'
         for doc in search_docs])
    return formatted_search_docs

@tool
def arxiv_search(query: str) -> str:
    """Search Arxiv for a query and return maximum 3 results."""
    search_docs = ArxivLoader(query=query, load_max_docs=3).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
         for doc in search_docs])
    return formatted_search_docs

# CSV-based Vector Store Class
class CSVVectorStore:
    def __init__(self, csv_file_path: str):
        """Initialize the CSV vector store."""
        self.df = pd.read_csv(csv_file_path)
        # Convert string representation of embeddings to numpy arrays
        self.df['embedding'] = self.df['embedding'].apply(ast.literal_eval)
        self.embeddings_matrix = np.array(self.df['embedding'].tolist())
    
    def similarity_search(self, query_embedding: np.ndarray, k: int = 1):
        """Find most similar documents to the query embedding."""
        # Calculate cosine similarity
        similarities = cosine_similarity([query_embedding], self.embeddings_matrix)[0]
        
        # Get top k indices
        top_indices = np.argsort(similarities)[-k:][::-1]
        
        # Return results in a format similar to LangChain's Document
        results = []
        for idx in top_indices:
            class Document:
                def __init__(self, page_content, metadata):
                    self.page_content = page_content
                    self.metadata = metadata
            
            doc = Document(
                page_content=self.df.iloc[idx]['content'], 
                metadata=ast.literal_eval(self.df.iloc[idx]['metadata']) if isinstance(self.df.iloc[idx]['metadata'], str) else self.df.iloc[idx]['metadata']
            )
            results.append(doc)
        
        return results

# System prompt
system_prompt = """You are a helpful assistant tasked with answering questions using a set of tools. Now, I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, do not use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, do not use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string. Your answer should only start with 'FINAL ANSWER: ', then follows with the answer."""

# Tools list
tools = [
    multiply,
    add,
    subtract,
    divide,
    modulus,
    wiki_search,
    web_search,
    arxiv_search,
]

from langgraph.graph import StateGraph
from langgraph.graph.message import MessagesState

def build_graph(csv_file_path: str = "embedding_database.csv"):
    """Build the LangGraph with CSV-based vector store and tools."""
    
    # Initialize CSV vector store
    vector_store = CSVVectorStore(csv_file_path)
    
    # System message
    sys_msg = SystemMessage(content=system_prompt)
    
    from langchain_community.llms import HuggingFaceEndpoint

    llm = HuggingFaceEndpoint(
        endpoint_url="https://api.endpoints.huggingface.co/v1/completions",
        huggingfacehub_api_token="inference",
        model_kwargs={"max_tokens": 512}
    )


    # Bind tools to LLM
    llm_with_tools = llm.bind_tools(tools)
    
    # Function to enrich state with relevant content from vector store
    def retrieve_docs(state: MessagesState) -> MessagesState:
        last_human_msg = [msg for msg in state["messages"] if isinstance(msg, HumanMessage)][-1]
        query = last_human_msg.content
        query_embedding = get_query_embedding(query)
        docs = vector_store.similarity_search(query_embedding, k=2)
        
        content_blocks = [
            f"<Document metadata={doc.metadata}>\n{doc.page_content}\n</Document>"
            for doc in docs
        ]
        combined_doc_text = "\n\n---\n\n".join(content_blocks)
        
        system_prefix = SystemMessage(content=combined_doc_text)
        return {"messages": [system_prefix] + state["messages"]}
    
    # Node function for assistant
    def call_llm(state: MessagesState) -> MessagesState:
        messages = [sys_msg] + state["messages"]
        response = llm_with_tools.invoke(messages)
        return {"messages": state["messages"] + [response]}
    
    # Construct LangGraph
    graph = StateGraph(MessagesState)
    graph.add_node("retrieve_docs", retrieve_docs)
    graph.add_node("llm", call_llm)
    graph.set_entry_point("retrieve_docs")
    graph.add_edge("retrieve_docs", "llm")
    graph.set_finish_point("llm")
    
    return graph.compile()


# Test
if __name__ == "__main__":
    question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
    
    # Build the graph (you'll need to provide the path to your CSV file)
    graph = build_graph(csv_file_path="embedding_database.csv")
    
    # Run the graph
    messages = [HumanMessage(content=question)]
    messages = graph.invoke({"messages": messages})
    
    for m in messages["messages"]:
        m.pretty_print()