File size: 8,066 Bytes
692591b 6e46110 692591b 6e46110 692591b e0a2b8d 692591b aca9f26 b42faa7 aca9f26 692591b 7ca0b04 04f9b43 bd67a52 c6af0df bd67a52 c6af0df 04f9b43 c6af0df 869a8d8 04f9b43 bd67a52 a7f71dd f003228 dcbda4c c0b1cb4 dcbda4c 1da6df4 04f9b43 692591b aca9f26 692591b aca9f26 692591b dcbda4c aca9f26 dcbda4c 692591b aca9f26 692591b aca9f26 692591b aca9f26 692591b b42faa7 692591b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
"""LangGraph Agent with CSV-based Vector Store"""
import os
import ast
import pandas as pd
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition, ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
load_dotenv()
# Math tools
@tool
def multiply(a: int, b: int) -> int:
"""Multiply two numbers."""
return a * b
@tool
def add(a: int, b: int) -> int:
"""Add two numbers."""
return a + b
@tool
def subtract(a: int, b: int) -> int:
"""Subtract two numbers."""
return a - b
@tool
def divide(a: int, b: int) -> float:
"""Divide two numbers."""
if b == 0:
raise ValueError("Cannot divide by zero.")
return a / b
@tool
def modulus(a: int, b: int) -> int:
"""Get the modulus of two numbers."""
return a % b
# Search tools
@tool
def wiki_search(query: str) -> str:
"""Search Wikipedia for a query and return maximum 2 results."""
search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
formatted_search_docs = "\n\n---\n\n".join(
[f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
for doc in search_docs])
return formatted_search_docs
@tool
def web_search(query: str) -> str:
"""Search Tavily for a query and return maximum 3 results."""
search_docs = TavilySearchResults(max_results=3).invoke(query=query)
formatted_search_docs = "\n\n---\n\n".join(
[f'<Document source="{doc.get("url", "")}" title="{doc.get("title", "")}"/>\n{doc.get("content", "")}\n</Document>'
for doc in search_docs])
return formatted_search_docs
@tool
def arxiv_search(query: str) -> str:
"""Search Arxiv for a query and return maximum 3 results."""
search_docs = ArxivLoader(query=query, load_max_docs=3).load()
formatted_search_docs = "\n\n---\n\n".join(
[f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
for doc in search_docs])
return formatted_search_docs
# CSV-based Vector Store Class
class CSVVectorStore:
def __init__(self, csv_file_path: str):
"""Initialize the CSV vector store."""
self.df = pd.read_csv(csv_file_path)
# Convert string representation of embeddings to numpy arrays
self.df['embedding'] = self.df['embedding'].apply(ast.literal_eval)
self.embeddings_matrix = np.array(self.df['embedding'].tolist())
def similarity_search(self, query_embedding: np.ndarray, k: int = 1):
"""Find most similar documents to the query embedding."""
# Calculate cosine similarity
similarities = cosine_similarity([query_embedding], self.embeddings_matrix)[0]
# Get top k indices
top_indices = np.argsort(similarities)[-k:][::-1]
# Return results in a format similar to LangChain's Document
results = []
for idx in top_indices:
class Document:
def __init__(self, page_content, metadata):
self.page_content = page_content
self.metadata = metadata
doc = Document(
page_content=self.df.iloc[idx]['content'],
metadata=ast.literal_eval(self.df.iloc[idx]['metadata']) if isinstance(self.df.iloc[idx]['metadata'], str) else self.df.iloc[idx]['metadata']
)
results.append(doc)
return results
# System prompt
system_prompt = """You are a helpful assistant tasked with answering questions using a set of tools. Now, I will ask you a question. Report your thoughts, and finish your answer with the following template: FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, do not use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, do not use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string. Your answer should only start with 'FINAL ANSWER: ', then follows with the answer."""
# Tools list
tools = [
multiply,
add,
subtract,
divide,
modulus,
wiki_search,
web_search,
arxiv_search,
]
from langgraph.graph import StateGraph
from langgraph.graph.message import MessagesState
def build_graph(csv_file_path: str = "embeddings.csv"):
"""Build the LangGraph with CSV-based vector store and tools."""
# Initialize CSV vector store
vector_store = CSVVectorStore(csv_file_path)
# System message
sys_msg = SystemMessage(content=system_prompt)
import os
from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace
llm = HuggingFaceEndpoint(
repo_id="meta-llama/Meta-Llama-3-8B-Instruct",
huggingfacehub_api_token=os.environ["agents_token"], # uses the secret
max_new_tokens=512,
temperature=0.7,
)
chat_model = ChatHuggingFace(llm=llm)
llm_with_tools = chat_model.bind_tools(tools=tools)
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("all-mpnet-base-v2") # 768-dim
query_embedding = model.encode(query_text, convert_to_tensor=True)
doc_embedding = model.encode(doc_text, convert_to_tensor=True)
def get_query_embedding(query: str) -> np.ndarray:
return embedding_model.encode(query)
# Function to enrich state with relevant content from vector store
def retrieve_docs(state: MessagesState) -> MessagesState:
last_human_msg = [msg for msg in state["messages"] if isinstance(msg, HumanMessage)][-1]
query = last_human_msg.content
query_embedding = get_query_embedding(query)
docs = vector_store.similarity_search(query_embedding, k=2)
context = "\n\n---\n\n".join(
f"<Document metadata={doc.metadata}>\n{doc.page_content}\n</Document>"
for doc in docs
)
combined_content = f"{system_prompt}\n\nHere are relevant documents:\n\n{context}"
system_message = SystemMessage(content=combined_content)
return {"messages": [system_message, last_human_msg]}
# Node function for assistant
def call_llm(state: MessagesState) -> MessagesState:
messages = [sys_msg] + state["messages"]
response = llm_with_tools.invoke(messages)
return {"messages": state["messages"] + [response]}
# Construct LangGraph
graph = StateGraph(MessagesState)
graph.add_node("retrieve_docs", retrieve_docs)
graph.add_node("llm", call_llm)
graph.set_entry_point("retrieve_docs")
graph.add_edge("retrieve_docs", "llm")
graph.set_finish_point("llm")
return graph.compile()
# Test
if __name__ == "__main__":
question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
# Build the graph (you'll need to provide the path to your CSV file)
graph = build_graph(csv_file_path="embeddings.csv")
# Run the graph
messages = [HumanMessage(content=question)]
messages = graph.invoke({"messages": messages})
for m in messages["messages"]:
m.pretty_print() |