janbanot commited on
Commit
ff9698f
1 Parent(s): fccc760

feat: init app

Browse files
Files changed (4) hide show
  1. .gitignore +2 -0
  2. app.py +77 -60
  3. prompts.json +18 -0
  4. requirements.txt +4 -1
.gitignore ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ .aider*
2
+ .env
app.py CHANGED
@@ -1,64 +1,81 @@
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
  )
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
+ import json
2
  import gradio as gr
3
+ import torch
4
+ from transformers import AutoModelForCausalLM, AutoTokenizer
5
+ import spaces
6
+
7
+ # Configuration
8
+ MODEL_NAME = "speakleash/Bielik-11B-v2.3-Instruct"
9
+ # DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
10
+ DEVICE = "cuda"
11
+ TORCH_DTYPE = torch.bfloat16 if torch.cuda.is_available() else torch.float32
12
+ MAX_TOKENS = 1000
13
+
14
+ # Load model and tokenizer
15
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
16
+ model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=TORCH_DTYPE).to(
17
+ DEVICE
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  )
19
 
20
+ # Load prompts
21
+ with open("prompts.json") as f:
22
+ prompts = json.load(f)
23
+
24
+
25
+ @spaces.GPU
26
+ def transform_text(prompt_name, user_input):
27
+ """Transform text using selected prompt and Bielik model"""
28
+ try:
29
+ # Get selected prompt
30
+ selected_prompt = next(p for p in prompts if p["name"] == prompt_name)
31
+
32
+ # Create messages structure
33
+ messages = [
34
+ {"role": "system", "content": selected_prompt["system_message"]},
35
+ {"role": "user", "content": user_input},
36
+ ]
37
+
38
+ # Tokenize and generate
39
+ input_ids = tokenizer.apply_chat_template(messages, return_tensors="pt").to(
40
+ DEVICE
41
+ )
42
+
43
+ generated_ids = model.generate(
44
+ input_ids, max_new_tokens=MAX_TOKENS, do_sample=True
45
+ )
46
+
47
+ return tokenizer.batch_decode(generated_ids)[0]
48
+
49
+ except Exception as e:
50
+ return f"Error: {str(e)}"
51
+
52
+
53
+ # Create Gradio interface
54
+ with gr.Blocks(title="Bielik Goblin") as interface:
55
+ gr.Markdown("# Bielik Goblin")
56
+
57
+ with gr.Row():
58
+ prompt_select = gr.Dropdown(
59
+ choices=[p["name"] for p in prompts],
60
+ label="Wybierz prompt",
61
+ interactive=True,
62
+ )
63
+
64
+ user_input = gr.Textbox(
65
+ label="Tw贸j tekst", placeholder="Wpisz tutaj sw贸j tekst...", lines=5
66
+ )
67
+
68
+ transform_btn = gr.Button("Przekszta艂膰 tekst", variant="primary")
69
+
70
+ with gr.Column():
71
+ progress = gr.StatusTracker()
72
+ output = gr.Textbox(label="Wynik", interactive=False)
73
+
74
+ transform_btn.click(
75
+ fn=transform_text,
76
+ inputs=[prompt_select, user_input],
77
+ outputs=output,
78
+ status=progress,
79
+ )
80
 
81
+ interface.queue().launch(debug=True)
 
prompts.json ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "name": "Parafraza",
4
+ "system_message": "Parafrazuj podany tekst zachowuj膮c jego g艂贸wn膮 ide臋. U偶ywaj naturalnego, potocznego j臋zyka polskiego."
5
+ },
6
+ {
7
+ "name": "Formalizacja",
8
+ "system_message": "Przekszta艂膰 tekst na formalny styl biznesowy. Zachowaj wszystkie kluczowe informacje."
9
+ },
10
+ {
11
+ "name": "Korekta",
12
+ "system_message": "Popraw gramatyk臋, interpunkcj臋 i styl tekstu. Zachowaj oryginalne znaczenie."
13
+ },
14
+ {
15
+ "name": "Podsumowanie",
16
+ "system_message": "Stw贸rz zwi臋z艂e podsumowanie tekstu, zachowuj膮c kluczowe punkty. Maksymalnie 3 zdania."
17
+ }
18
+ ]
requirements.txt CHANGED
@@ -1 +1,4 @@
1
- huggingface_hub==0.25.2
 
 
 
 
1
+ gradio>=4.0
2
+ transformers>=4.0
3
+ torch>=2.0
4
+ accelerate>=0.0