Spaces:
Runtime error
Runtime error
Commit
Β·
4103281
1
Parent(s):
70ba9c2
[feat] tell user that button doesn't work
Browse files- axolotl-config.md +411 -0
- src/axolotl_ui/app.py +6 -2
axolotl-config.md
CHANGED
@@ -0,0 +1,411 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This is the huggingface model that contains *.pt, *.safetensors, or *.bin files
|
2 |
+
# This can also be a relative path to a model on disk
|
3 |
+
base_model: ./llama-7b-hf
|
4 |
+
# You can specify an ignore pattern if the model repo contains more than 1 model type (*.pt, etc)
|
5 |
+
base_model_ignore_patterns:
|
6 |
+
# If the base_model repo on hf hub doesn't include configuration .json files,
|
7 |
+
# You can set that here, or leave this empty to default to base_model
|
8 |
+
base_model_config: ./llama-7b-hf
|
9 |
+
# You can specify to choose a specific model revision from huggingface hub
|
10 |
+
model_revision:
|
11 |
+
# Optional tokenizer configuration override in case you want to use a different tokenizer
|
12 |
+
# than the one defined in the base model
|
13 |
+
tokenizer_config:
|
14 |
+
# If you want to specify the type of model to load, AutoModelForCausalLM is a good choice too
|
15 |
+
model_type: AutoModelForCausalLM
|
16 |
+
# Corresponding tokenizer for the model AutoTokenizer is a good choice
|
17 |
+
tokenizer_type: AutoTokenizer
|
18 |
+
# Trust remote code for untrusted source
|
19 |
+
trust_remote_code:
|
20 |
+
# use_fast option for tokenizer loading from_pretrained, default to True
|
21 |
+
tokenizer_use_fast:
|
22 |
+
# Whether to use the legacy tokenizer setting, defaults to True
|
23 |
+
tokenizer_legacy:
|
24 |
+
# Resize the model embeddings when new tokens are added to multiples of 32
|
25 |
+
# This is reported to improve training speed on some models
|
26 |
+
resize_token_embeddings_to_32x:
|
27 |
+
|
28 |
+
# Used to identify which the model is based on
|
29 |
+
is_falcon_derived_model:
|
30 |
+
is_llama_derived_model:
|
31 |
+
# Please note that if you set this to true, `padding_side` will be set to "left" by default
|
32 |
+
is_mistral_derived_model:
|
33 |
+
is_qwen_derived_model:
|
34 |
+
|
35 |
+
# optional overrides to the base model configuration
|
36 |
+
model_config:
|
37 |
+
# RoPE Scaling https://github.com/huggingface/transformers/pull/24653
|
38 |
+
rope_scaling:
|
39 |
+
type: # linear | dynamic
|
40 |
+
factor: # float
|
41 |
+
|
42 |
+
# optional overrides to the bnb 4bit quantization configuration
|
43 |
+
# https://huggingface.co/docs/transformers/main/main_classes/quantization#transformers.BitsAndBytesConfig
|
44 |
+
bnb_config_kwargs:
|
45 |
+
# These are default values
|
46 |
+
llm_int8_has_fp16_weight: false
|
47 |
+
bnb_4bit_quant_type: nf4
|
48 |
+
bnb_4bit_use_double_quant: true
|
49 |
+
|
50 |
+
|
51 |
+
# Whether you are training a 4-bit GPTQ quantized model
|
52 |
+
gptq: true
|
53 |
+
gptq_groupsize: 128 # group size
|
54 |
+
gptq_model_v1: false # v1 or v2
|
55 |
+
|
56 |
+
# This will attempt to quantize the model down to 8 bits and use adam 8 bit optimizer
|
57 |
+
load_in_8bit: true
|
58 |
+
# Use bitsandbytes 4 bit
|
59 |
+
load_in_4bit:
|
60 |
+
|
61 |
+
# Use CUDA bf16
|
62 |
+
bf16: true # bool or 'full' for `bf16_full_eval`. require >=ampere
|
63 |
+
# Use CUDA fp16
|
64 |
+
fp16: true
|
65 |
+
# Use CUDA tf32
|
66 |
+
tf32: true # require >=ampere
|
67 |
+
|
68 |
+
# No AMP (automatic mixed precision)
|
69 |
+
bfloat16: true # require >=ampere
|
70 |
+
float16: true
|
71 |
+
|
72 |
+
# Limit the memory for all available GPUs to this amount (if an integer, expressed in gigabytes); default: unset
|
73 |
+
gpu_memory_limit: 20GiB
|
74 |
+
# Do the LoRA/PEFT loading on CPU -- this is required if the base model is so large it takes up most or all of the available GPU VRAM, e.g. during a model and LoRA merge
|
75 |
+
lora_on_cpu: true
|
76 |
+
|
77 |
+
# A list of one or more datasets to finetune the model with
|
78 |
+
datasets:
|
79 |
+
# HuggingFace dataset repo | s3://,gs:// path | "json" for local dataset, make sure to fill data_files
|
80 |
+
- path: vicgalle/alpaca-gpt4
|
81 |
+
# The type of prompt to use for training. [alpaca, sharegpt, gpteacher, oasst, reflection]
|
82 |
+
type: alpaca # format | format:<prompt_style> (chat/instruct) | <prompt_strategies>.load_<load_fn>
|
83 |
+
ds_type: # Optional[str] (json|arrow|parquet|text|csv) defines the datatype when path is a file
|
84 |
+
data_files: # Optional[str] path to source data files
|
85 |
+
shards: # Optional[int] number of shards to split data into
|
86 |
+
name: # Optional[str] name of dataset configuration to load
|
87 |
+
train_on_split: train # Optional[str] name of dataset split to load from
|
88 |
+
|
89 |
+
# Optional[str] fastchat conversation type, only used with type: sharegpt
|
90 |
+
conversation: # Options (see Conversation 'name'): https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py
|
91 |
+
field_human: # Optional[str]. Human key to use for conversation.
|
92 |
+
field_model: # Optional[str]. Assistant key to use for conversation.
|
93 |
+
|
94 |
+
# Custom user instruction prompt
|
95 |
+
- path: repo
|
96 |
+
type:
|
97 |
+
# The below are defaults. only set what's needed if you use a different column name.
|
98 |
+
system_prompt: ""
|
99 |
+
system_format: "{system}"
|
100 |
+
field_system: system
|
101 |
+
field_instruction: instruction
|
102 |
+
field_input: input
|
103 |
+
field_output: output
|
104 |
+
|
105 |
+
# Customizable to be single line or multi-line
|
106 |
+
# Use {instruction}/{input} as key to be replaced
|
107 |
+
# 'format' can include {input}
|
108 |
+
format: |-
|
109 |
+
User: {instruction} {input}
|
110 |
+
Assistant:
|
111 |
+
# 'no_input_format' cannot include {input}
|
112 |
+
no_input_format: "{instruction} "
|
113 |
+
|
114 |
+
# For `completion` datsets only, uses the provided field instead of `text` column
|
115 |
+
field:
|
116 |
+
|
117 |
+
# A list of one or more datasets to eval the model with.
|
118 |
+
# You can use either test_datasets, or val_set_size, but not both.
|
119 |
+
test_datasets:
|
120 |
+
- path: /workspace/data/eval.jsonl
|
121 |
+
ds_type: json
|
122 |
+
# You need to specify a split. For "json" datasets the default split is called "train".
|
123 |
+
split: train
|
124 |
+
type: completion
|
125 |
+
data_files:
|
126 |
+
- /workspace/data/eval.jsonl
|
127 |
+
|
128 |
+
# use RL training: dpo, ipo, kto_pair
|
129 |
+
rl:
|
130 |
+
|
131 |
+
# Saves the desired chat template to the tokenizer_config.json for easier inferencing
|
132 |
+
# Currently supports chatml and inst (mistral/mixtral)
|
133 |
+
chat_template: chatml
|
134 |
+
# Changes the default system message
|
135 |
+
default_system_message: You are a helpful assistant. Please give a long and detailed answer. # Currently only supports chatml.
|
136 |
+
# Axolotl attempts to save the dataset as an arrow after packing the data together so
|
137 |
+
# subsequent training attempts load faster, relative path
|
138 |
+
dataset_prepared_path: data/last_run_prepared
|
139 |
+
# Push prepared dataset to hub
|
140 |
+
push_dataset_to_hub: # repo path
|
141 |
+
# The maximum number of processes to use while preprocessing your input dataset. This defaults to `os.cpu_count()`
|
142 |
+
# if not set.
|
143 |
+
dataset_processes: # defaults to os.cpu_count() if not set
|
144 |
+
# Keep dataset in memory while preprocessing
|
145 |
+
# Only needed if cached dataset is taking too much storage
|
146 |
+
dataset_keep_in_memory:
|
147 |
+
# push checkpoints to hub
|
148 |
+
hub_model_id: # repo path to push finetuned model
|
149 |
+
# how to push checkpoints to hub
|
150 |
+
# https://huggingface.co/docs/transformers/v4.31.0/en/main_classes/trainer#transformers.TrainingArguments.hub_strategy
|
151 |
+
hub_strategy:
|
152 |
+
# Whether to use hf `use_auth_token` for loading datasets. Useful for fetching private datasets
|
153 |
+
# Required to be true when used in combination with `push_dataset_to_hub`
|
154 |
+
hf_use_auth_token: # boolean
|
155 |
+
# How much of the dataset to set aside as evaluation. 1 = 100%, 0.50 = 50%, etc. 0 for no eval.
|
156 |
+
val_set_size: 0.04
|
157 |
+
# Num shards for whole dataset
|
158 |
+
dataset_shard_num:
|
159 |
+
# Index of shard to use for whole dataset
|
160 |
+
dataset_shard_idx:
|
161 |
+
|
162 |
+
# The maximum length of an input to train with, this should typically be less than 2048
|
163 |
+
# as most models have a token/context limit of 2048
|
164 |
+
sequence_len: 2048
|
165 |
+
# Pad inputs so each step uses constant sized buffers
|
166 |
+
# This will reduce memory fragmentation and may prevent OOMs, by re-using memory more efficiently
|
167 |
+
pad_to_sequence_len:
|
168 |
+
# Use efficient multi-packing with block diagonal attention and per sequence position_ids. Recommend set to 'true'
|
169 |
+
sample_packing:
|
170 |
+
# Set to 'false' if getting errors during eval with sample_packing on.
|
171 |
+
eval_sample_packing:
|
172 |
+
# You can set these packing optimizations AFTER starting a training at least once.
|
173 |
+
# The trainer will provide recommended values for these values.
|
174 |
+
sample_packing_eff_est:
|
175 |
+
total_num_tokens:
|
176 |
+
|
177 |
+
# Passed through to transformers when loading the model when launched without accelerate
|
178 |
+
# Use `sequential` when training w/ model parallelism to limit memory
|
179 |
+
device_map:
|
180 |
+
# Defines the max memory usage per gpu on the system. Passed through to transformers when loading the model.
|
181 |
+
max_memory:
|
182 |
+
|
183 |
+
# If you want to use 'lora' or 'qlora' or leave blank to train all parameters in original model
|
184 |
+
adapter: lora
|
185 |
+
# If you already have a lora model trained that you want to load, put that here.
|
186 |
+
# This means after training, if you want to test the model, you should set this to the value of `output_dir`.
|
187 |
+
# Note that if you merge an adapter to the base model, a new subdirectory `merged` will be created under the `output_dir`.
|
188 |
+
lora_model_dir:
|
189 |
+
|
190 |
+
# LoRA hyperparameters
|
191 |
+
# For more details about the following options, see:
|
192 |
+
# https://www.anyscale.com/blog/fine-tuning-llms-lora-or-full-parameter-an-in-depth-analysis-with-llama-2
|
193 |
+
lora_r: 8
|
194 |
+
lora_alpha: 16
|
195 |
+
lora_dropout: 0.05
|
196 |
+
lora_target_modules:
|
197 |
+
- q_proj
|
198 |
+
- v_proj
|
199 |
+
# - k_proj
|
200 |
+
# - o_proj
|
201 |
+
# - gate_proj
|
202 |
+
# - down_proj
|
203 |
+
# - up_proj
|
204 |
+
lora_target_linear: # If true, will target all linear modules
|
205 |
+
peft_layers_to_transform: # The layer indices to transform, otherwise, apply to all layers
|
206 |
+
|
207 |
+
# If you added new tokens to the tokenizer, you may need to save some LoRA modules because they need to know the new tokens.
|
208 |
+
# For LLaMA and Mistral, you need to save `embed_tokens` and `lm_head`. It may vary for other models.
|
209 |
+
# `embed_tokens` converts tokens to embeddings, and `lm_head` converts embeddings to token probabilities.
|
210 |
+
# https://github.com/huggingface/peft/issues/334#issuecomment-1561727994
|
211 |
+
lora_modules_to_save:
|
212 |
+
# - embed_tokens
|
213 |
+
# - lm_head
|
214 |
+
|
215 |
+
lora_fan_in_fan_out: false
|
216 |
+
|
217 |
+
peft:
|
218 |
+
# Configuration options for loftq initialization for LoRA
|
219 |
+
# https://huggingface.co/docs/peft/developer_guides/quantization#loftq-initialization
|
220 |
+
loftq_config:
|
221 |
+
loftq_bits: # typically 4 bits
|
222 |
+
|
223 |
+
# ReLoRA configuration
|
224 |
+
# Must use either 'lora' or 'qlora' adapter, and does not support fsdp or deepspeed
|
225 |
+
relora_steps: # Number of steps per ReLoRA restart
|
226 |
+
relora_warmup_steps: # Number of per-restart warmup steps
|
227 |
+
relora_cpu_offload: # True to perform lora weight merges on cpu during restarts, for modest gpu memory savings
|
228 |
+
|
229 |
+
# wandb configuration if you're using it
|
230 |
+
# Make sure your `WANDB_API_KEY` environment variable is set (recommended) or you login to wandb with `wandb login`.
|
231 |
+
wandb_mode: # "offline" to save run metadata locally and not sync to the server, "disabled" to turn off wandb
|
232 |
+
wandb_project: # Your wandb project name
|
233 |
+
wandb_entity: # A wandb Team name if using a Team
|
234 |
+
wandb_watch:
|
235 |
+
wandb_name: # Set the name of your wandb run
|
236 |
+
wandb_run_id: # Set the ID of your wandb run
|
237 |
+
wandb_log_model: # "checkpoint" to log model to wandb Artifacts every `save_steps` or "end" to log only at the end of training
|
238 |
+
|
239 |
+
# mlflow configuration if you're using it
|
240 |
+
mlflow_tracking_uri: # URI to mlflow
|
241 |
+
mlflow_experiment_name: # Your experiment name
|
242 |
+
|
243 |
+
# Where to save the full-finetuned model to
|
244 |
+
output_dir: ./completed-model
|
245 |
+
|
246 |
+
# Whether to use torch.compile and which backend to use
|
247 |
+
torch_compile: # bool
|
248 |
+
torch_compile_backend: # Optional[str]
|
249 |
+
|
250 |
+
# Training hyperparameters
|
251 |
+
|
252 |
+
# If greater than 1, backpropagation will be skipped and the gradients will be accumulated for the given number of steps.
|
253 |
+
gradient_accumulation_steps: 1
|
254 |
+
# The number of samples to include in each batch. This is the number of samples sent to each GPU.
|
255 |
+
micro_batch_size: 2
|
256 |
+
eval_batch_size:
|
257 |
+
num_epochs: 4
|
258 |
+
warmup_steps: 100 # cannot use with warmup_ratio
|
259 |
+
warmup_ratio: 0.05 # cannot use with warmup_steps
|
260 |
+
learning_rate: 0.00003
|
261 |
+
lr_quadratic_warmup:
|
262 |
+
logging_steps:
|
263 |
+
eval_steps: # Leave empty to eval at each epoch, integers for every N steps. decimal for fraction of total steps
|
264 |
+
evals_per_epoch: # number of times per epoch to run evals, mutually exclusive with eval_steps
|
265 |
+
save_strategy: # Set to `no` to skip checkpoint saves
|
266 |
+
save_steps: # Leave empty to save at each epoch
|
267 |
+
saves_per_epoch: # number of times per epoch to save a checkpoint, mutually exclusive with save_steps
|
268 |
+
save_total_limit: # Checkpoints saved at a time
|
269 |
+
# Maximum number of iterations to train for. It precedes num_epochs which means that
|
270 |
+
# if both are set, num_epochs will not be guaranteed.
|
271 |
+
# e.g., when 1 epoch is 1000 steps => `num_epochs: 2` and `max_steps: 100` will train for 100 steps
|
272 |
+
max_steps:
|
273 |
+
|
274 |
+
eval_table_size: # Approximate number of predictions sent to wandb depending on batch size. Enabled above 0. Default is 0
|
275 |
+
eval_table_max_new_tokens: # Total number of tokens generated for predictions sent to wandb. Default is 128
|
276 |
+
|
277 |
+
loss_watchdog_threshold: # High loss value, indicating the learning has broken down (a good estimate is ~2 times the loss at the start of training)
|
278 |
+
loss_watchdog_patience: # Number of high-loss steps in a row before the trainer aborts (default: 3)
|
279 |
+
|
280 |
+
# Save model as safetensors (require safetensors package)
|
281 |
+
save_safetensors:
|
282 |
+
|
283 |
+
# Whether to mask out or include the human's prompt from the training labels
|
284 |
+
train_on_inputs: false
|
285 |
+
# Group similarly sized data to minimize padding.
|
286 |
+
# May be slower to start, as it must download and sort the entire dataset.
|
287 |
+
# Note that training loss may have an oscillating pattern with this enabled.
|
288 |
+
group_by_length: false
|
289 |
+
|
290 |
+
# Whether to use gradient checkpointing https://huggingface.co/docs/transformers/v4.18.0/en/performance#gradient-checkpointing
|
291 |
+
gradient_checkpointing: false
|
292 |
+
# additional kwargs to pass to the trainer for gradient checkpointing
|
293 |
+
# gradient_checkpointing_kwargs:
|
294 |
+
# use_reentrant: false
|
295 |
+
|
296 |
+
# Stop training after this many evaluation losses have increased in a row
|
297 |
+
# https://huggingface.co/transformers/v4.2.2/_modules/transformers/trainer_callback.html#EarlyStoppingCallback
|
298 |
+
early_stopping_patience: 3
|
299 |
+
|
300 |
+
# Specify a scheduler and kwargs to use with the optimizer
|
301 |
+
lr_scheduler: # 'one_cycle' | 'log_sweep' | empty for cosine
|
302 |
+
lr_scheduler_kwargs:
|
303 |
+
cosine_min_lr_ratio: # decay lr to some percentage of the peak lr, e.g. cosine_min_lr_ratio=0.1 for 10% of peak lr
|
304 |
+
|
305 |
+
# For one_cycle optim
|
306 |
+
lr_div_factor: # Learning rate div factor
|
307 |
+
|
308 |
+
# For log_sweep optim
|
309 |
+
log_sweep_min_lr:
|
310 |
+
log_sweep_max_lr:
|
311 |
+
|
312 |
+
# Specify optimizer
|
313 |
+
# Valid values are driven by the Transformers OptimizerNames class, see:
|
314 |
+
# https://github.com/huggingface/transformers/blob/95b374952dc27d8511541d6f5a4e22c9ec11fb24/src/transformers/training_args.py#L134
|
315 |
+
#
|
316 |
+
# Note that not all optimizers may be available in your environment, ex: 'adamw_anyprecision' is part of
|
317 |
+
# torchdistx, 'adamw_bnb_8bit' is part of bnb.optim.Adam8bit, etc. When in doubt, it is recommended to start with the optimizer used
|
318 |
+
# in the examples/ for your model and fine-tuning use case.
|
319 |
+
#
|
320 |
+
# Valid values for 'optimizer' include:
|
321 |
+
# - adamw_hf
|
322 |
+
# - adamw_torch
|
323 |
+
# - adamw_torch_fused
|
324 |
+
# - adamw_torch_xla
|
325 |
+
# - adamw_apex_fused
|
326 |
+
# - adafactor
|
327 |
+
# - adamw_anyprecision
|
328 |
+
# - sgd
|
329 |
+
# - adagrad
|
330 |
+
# - adamw_bnb_8bit
|
331 |
+
# - lion_8bit
|
332 |
+
# - lion_32bit
|
333 |
+
# - paged_adamw_32bit
|
334 |
+
# - paged_adamw_8bit
|
335 |
+
# - paged_lion_32bit
|
336 |
+
# - paged_lion_8bit
|
337 |
+
optimizer:
|
338 |
+
# Specify weight decay
|
339 |
+
weight_decay:
|
340 |
+
# adamw hyperparams
|
341 |
+
adam_beta1:
|
342 |
+
adam_beta2:
|
343 |
+
adam_epsilon:
|
344 |
+
# Gradient clipping max norm
|
345 |
+
max_grad_norm:
|
346 |
+
|
347 |
+
# Augmentation techniques
|
348 |
+
# NEFT https://arxiv.org/abs/2310.05914, set this to a number (paper default is 5) to add noise to embeddings
|
349 |
+
# currently only supported on Llama and Mistral
|
350 |
+
neftune_noise_alpha:
|
351 |
+
|
352 |
+
# Whether to bettertransformers
|
353 |
+
flash_optimum:
|
354 |
+
# Whether to use xformers attention patch https://github.com/facebookresearch/xformers:
|
355 |
+
xformers_attention:
|
356 |
+
# Whether to use flash attention patch https://github.com/Dao-AILab/flash-attention:
|
357 |
+
flash_attention:
|
358 |
+
flash_attn_cross_entropy: # Whether to use flash-attention cross entropy implementation - advanced use only
|
359 |
+
flash_attn_rms_norm: # Whether to use flash-attention rms norm implementation - advanced use only
|
360 |
+
flash_attn_fuse_qkv: # Whether to fuse QKV into a single operation
|
361 |
+
flash_attn_fuse_mlp: # Whether to fuse part of the MLP into a single operation
|
362 |
+
# Whether to use scaled-dot-product attention
|
363 |
+
# https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html
|
364 |
+
sdp_attention:
|
365 |
+
# Shifted-sparse attention (only llama) - https://arxiv.org/pdf/2309.12307.pdf
|
366 |
+
s2_attention:
|
367 |
+
# Resume from a specific checkpoint dir
|
368 |
+
resume_from_checkpoint:
|
369 |
+
# If resume_from_checkpoint isn't set and you simply want it to start where it left off.
|
370 |
+
# Be careful with this being turned on between different models.
|
371 |
+
auto_resume_from_checkpoints: false
|
372 |
+
|
373 |
+
# Don't mess with this, it's here for accelerate and torchrun
|
374 |
+
local_rank:
|
375 |
+
|
376 |
+
# Add or change special tokens.
|
377 |
+
# If you add tokens here, you don't need to add them to the `tokens` list.
|
378 |
+
special_tokens:
|
379 |
+
# bos_token: "<s>"
|
380 |
+
# eos_token: "</s>"
|
381 |
+
# unk_token: "<unk>"
|
382 |
+
|
383 |
+
# Add extra tokens.
|
384 |
+
tokens:
|
385 |
+
|
386 |
+
# FSDP
|
387 |
+
fsdp:
|
388 |
+
fsdp_config:
|
389 |
+
|
390 |
+
# Deepspeed config path. e.g., deepspeed_configs/zero3.json
|
391 |
+
deepspeed:
|
392 |
+
|
393 |
+
# Advanced DDP Arguments
|
394 |
+
ddp_timeout:
|
395 |
+
ddp_bucket_cap_mb:
|
396 |
+
ddp_broadcast_buffers:
|
397 |
+
|
398 |
+
# Path to torch distx for optim 'adamw_anyprecision'
|
399 |
+
torchdistx_path:
|
400 |
+
|
401 |
+
# Set to HF dataset for type: 'completion' for streaming instead of pre-tokenize
|
402 |
+
pretraining_dataset:
|
403 |
+
|
404 |
+
# Debug mode
|
405 |
+
debug:
|
406 |
+
|
407 |
+
# Seed
|
408 |
+
seed:
|
409 |
+
|
410 |
+
# Allow overwrite yml config using from cli
|
411 |
+
strict:
|
src/axolotl_ui/app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
from pathlib import Path
|
2 |
|
3 |
-
from shiny import App, Inputs, Outputs, Session, ui
|
4 |
import shinyswatch
|
5 |
from htmltools import HTML
|
6 |
|
@@ -103,7 +103,11 @@ app_ui = ui.page_fillable(
|
|
103 |
|
104 |
|
105 |
def server(input: Inputs, output: Outputs, session: Session):
|
106 |
-
|
|
|
|
|
|
|
|
|
107 |
|
108 |
|
109 |
app = App(
|
|
|
1 |
from pathlib import Path
|
2 |
|
3 |
+
from shiny import App, Inputs, Outputs, Session, ui, reactive
|
4 |
import shinyswatch
|
5 |
from htmltools import HTML
|
6 |
|
|
|
103 |
|
104 |
|
105 |
def server(input: Inputs, output: Outputs, session: Session):
|
106 |
+
@reactive.Effect
|
107 |
+
@reactive.event(input.create_space)
|
108 |
+
def _():
|
109 |
+
ui.notification_show("This is not yet implemented.", type="warning")
|
110 |
+
|
111 |
|
112 |
|
113 |
app = App(
|