bark / bark_infinity /text_processing.py
jamalsenouci's picture
Upload folder using huggingface_hub
c6919c4
from typing import Dict, Optional, Union
from .config import logger, console
from typing import List
import os
import re
import datetime
import random
from typing import List
import re
import textwrap
from datetime import datetime
from rich.pretty import pprint
from rich.table import Table
from collections import defaultdict
from typing import List
import re
import random
from typing import Dict, Optional, Union
import logging
logger = logging.getLogger(__name__)
import re
def ordinal(n):
"""Add ordinal suffix to a number"""
return str(n) + ("th" if 4<=n%100<=20 else {1:"st",2:"nd",3:"rd"}.get(n%10, "th"))
def time_of_day(hour):
"""Define time of day based on hour"""
if 5 <= hour < 12:
return "in the morning"
elif 12 <= hour < 17:
return "in the afternoon"
elif 17 <= hour < 21:
return "in the evening"
else:
return "at night"
def current_date_time_in_words():
now = datetime.now()
day_of_week = now.strftime('%A')
month = now.strftime('%B')
day = ordinal(now.day)
year = now.year
hour = now.hour
minute = now.minute
time_of_day_str = time_of_day(hour)
if minute == 0:
minute_str = ""
elif minute == 1:
minute_str = "1 minute past"
elif minute == 15:
minute_str = "quarter past"
elif minute == 30:
minute_str = "half past"
elif minute == 45:
minute_str = "quarter to "
hour += 1
elif minute < 30:
minute_str = str(minute) + " minutes past"
else:
minute_str = str(60 - minute) + " minutes to "
hour += 1
hour_str = str(hour if hour <= 12 else hour - 12)
if minute_str:
time_str = minute_str + " " + hour_str
else:
time_str = hour_str + " o'clock"
time_string = f"{day_of_week}, {month} {day}, {year}, {time_str} {time_of_day_str}."
# Prepare final output
return time_string
#Let's keep comptability for now in case people are used to this
# Chunked generation originally from https://github.com/serp-ai/bark-with-voice-clone
def split_general_purpose(text, split_character_goal_length=150, split_character_max_length=200):
# return nltk.sent_tokenize(text)
# from https://github.com/neonbjb/tortoise-tts
"""Split text it into chunks of a desired length trying to keep sentences intact."""
# normalize text, remove redundant whitespace and convert non-ascii quotes to ascii
text = re.sub(r"\n\n+", "\n", text)
text = re.sub(r"\s+", " ", text)
text = re.sub(r"[“”]", '"', text)
rv = []
in_quote = False
current = ""
split_pos = []
pos = -1
end_pos = len(text) - 1
def seek(delta):
nonlocal pos, in_quote, current
is_neg = delta < 0
for _ in range(abs(delta)):
if is_neg:
pos -= 1
current = current[:-1]
else:
pos += 1
current += text[pos]
if text[pos] == '"':
in_quote = not in_quote
return text[pos]
def peek(delta):
p = pos + delta
return text[p] if p < end_pos and p >= 0 else ""
def commit():
nonlocal rv, current, split_pos
rv.append(current)
current = ""
split_pos = []
while pos < end_pos:
c = seek(1)
# do we need to force a split?
if len(current) >= split_character_max_length:
if len(split_pos) > 0 and len(current) > (split_character_goal_length / 2):
# we have at least one sentence and we are over half the desired length, seek back to the last split
d = pos - split_pos[-1]
seek(-d)
else:
# should split on semicolon too
# no full sentences, seek back until we are not in the middle of a word and split there
while c not in ";!?.\n " and pos > 0 and len(current) > split_character_goal_length:
c = seek(-1)
commit()
# check for sentence boundaries
elif not in_quote and (c in ";!?\n" or (c == "." and peek(1) in "\n ")):
# seek forward if we have consecutive boundary markers but still within the max length
while (
pos < len(text) - 1 and len(current) < split_character_max_length and peek(1) in "!?."
):
c = seek(1)
split_pos.append(pos)
if len(current) >= split_character_goal_length:
commit()
# treat end of quote as a boundary if its followed by a space or newline
elif in_quote and peek(1) == '"' and peek(2) in "\n ":
seek(2)
split_pos.append(pos)
rv.append(current)
# clean up, remove lines with only whitespace or punctuation
rv = [s.strip() for s in rv]
rv = [s for s in rv if len(s) > 0 and not re.match(r"^[\s\.,;:!?]*$", s)]
return rv
def is_sentence_ending(s):
return s in {"!", "?", ".", ";"}
def is_boundary_marker(s):
return s in {"!", "?", ".", "\n"}
def split_general_purpose_hm(text, split_character_goal_length=110, split_character_max_length=160):
def clean_text(text):
text = re.sub(r"\n\n+", "\n", text)
text = re.sub(r"\s+", " ", text)
text = re.sub(r"[“”]", '"', text)
return text
def _split_text(text):
sentences = []
sentence = ""
in_quote = False
for i, c in enumerate(text):
sentence += c
if c == '"':
in_quote = not in_quote
elif not in_quote and (is_sentence_ending(c) or c == "\n"):
if i < len(text) - 1 and text[i + 1] in '!?.':
continue
sentences.append(sentence.strip())
sentence = ""
if sentence.strip():
sentences.append(sentence.strip())
return sentences
def recombine_chunks(chunks):
combined_chunks = []
current_chunk = ""
for chunk in chunks:
if len(current_chunk) + len(chunk) + 1 <= split_character_max_length:
current_chunk += " " + chunk
else:
combined_chunks.append(current_chunk.strip())
current_chunk = chunk
if current_chunk.strip():
combined_chunks.append(current_chunk.strip())
return combined_chunks
cleaned_text = clean_text(text)
sentences = _split_text(cleaned_text)
wrapped_sentences = [textwrap.fill(s, width=split_character_goal_length) for s in sentences]
chunks = [chunk for s in wrapped_sentences for chunk in s.split('\n')]
combined_chunks = recombine_chunks(chunks)
return combined_chunks
def split_text(text: str, split_type: Optional[str] = None, split_type_quantity = 1, split_type_string: Optional[str] = None, split_type_value_type: Optional[str] = None) -> List[str]:
if text == '':
return [text]
# the old syntax still works if you don't use this parameter, ie
# split_type line, split_type_value 4, splits into groups of 4 lines
if split_type_value_type == '':
split_type_value_type = split_type
"""
if split_type == 'phrase':
# print(f"Loading spacy to split by phrase.")
nlp = spacy.load('en_core_web_sm')
chunks = split_by_phrase(text, nlp)
# print(chunks)
return chunks
"""
if split_type == 'string' or split_type == 'regex':
if split_type_string is None:
logger.warning(
f"Splitting by {split_type} requires a string to split by. Returning original text.")
return [text]
split_type_to_function = {
'word': split_by_words,
'line': split_by_lines,
'sentence': split_by_sentence,
'string': split_by_string,
'char' : split_by_char,
#'random': split_by_random,
# 'rhyme': split_by_rhymes,
# 'pos': split_by_part_of_speech,
'regex': split_by_regex,
}
if split_type in split_type_to_function:
# split into groups of 1 by the desired type
# this is so terrible even I'm embarassed, destroy all this code later, but I guess it does something useful atm
segmented_text = split_type_to_function[split_type](text, split_type = split_type, split_type_quantity=1, split_type_string=split_type_string, split_type_value_type=split_type_value_type)
final_segmented_text = []
current_segment = ''
split_type_quantity_found = 0
if split_type_value_type is None:
split_type_value_type = split_type
for seg in segmented_text: # for each line, for example, we can now split by 'words' or whatever, as a counter for when to break the group
current_segment += seg
#print(split_type_to_function[split_type](current_segment, split_type=split_type_value_type, split_type_quantity=1, split_type_string=split_type_string))
split_type_quantity_found = len(split_type_to_function[split_type_value_type](current_segment, split_type=split_type_value_type, split_type_quantity=1, split_type_string=split_type_string))
#print(f"I see {split_type_quantity_found} {split_type_value_type} in {current_segment}")
if split_type_quantity_found >= int(split_type_quantity):
final_segmented_text.append(current_segment)
split_type_quantity_found = 0
current_segment = ''
return final_segmented_text
logger.warning(
f"Splitting by {split_type} not a supported option. Returning original text.")
return [text]
def split_by_string(text: str, split_type: Optional[str] = None, split_type_quantity: Optional[int] = 1, split_type_string: Optional[str] = None, split_type_value_type: Optional[str] = None) -> List[str]:
if split_type_string is not None:
split_pattern = f"({split_type_string})"
split_list = re.split(split_pattern, text)
result = [split_list[0]]
for i in range(1, len(split_list), 2):
result.append(split_list[i] + split_list[i+1])
return result
else:
return text.split()
def split_by_regex(text: str, split_type: Optional[str] = None, split_type_quantity: Optional[int] = 1, split_type_string: Optional[str] = None, split_type_value_type: Optional[str] = None) -> List[str]:
chunks = []
start = 0
if split_type_string is not None:
for match in re.finditer(split_type_string, text):
end = match.start()
chunks.append(text[start:end].strip())
start = end
chunks.append(text[start:].strip())
return chunks
else:
return text.split()
def split_by_char(text: str, split_type: Optional[str] = None, split_type_quantity = 1, split_type_string: Optional[str] = None, split_type_value_type: Optional[str] = None) -> List[str]:
return list(text)
def split_by_words(text: str, split_type: Optional[str] = None, split_type_quantity = 1, split_type_string: Optional[str] = None, split_type_value_type: Optional[str] = None) -> List[str]:
return [word + ' ' for word in text.split() if text.strip()]
#return [' '.join(words[i:i + split_type_quantity]) for i in range(0, len(words), split_type_quantity)]
def split_by_lines(text: str, split_type: Optional[str] = None, split_type_quantity = 1, split_type_string: Optional[str] = None, split_type_value_type: Optional[str] = None) -> List[str]:
lines = [line + '\n' for line in text.split('\n') if line.strip()]
return lines
#return ['\n'.join(lines[i:i + split_type_quantity]) for i in range(0, len(lines), split_type_quantity)]
def split_by_sentence(text: str, split_type: Optional[str] = None, split_type_quantity: Optional[int] = 1, split_type_string: Optional[str] = None, split_type_value_type: Optional[str] = None) -> List[str]:
import nltk
text = text.replace("\n", " ").strip()
sentences = nltk.sent_tokenize(text)
return [sentence + ' ' for sentence in sentences]
#return [' '.join(sentences[i:i + split_type_quantity]) for i in range(0, len(sentences), split_type_quantity)]
"""
def split_by_sentences(text: str, n: int, language="en") -> List[str]:
seg = pysbd.Segmenter(language=language, clean=False)
sentences = seg.segment(text)
return [' '.join(sentences[i:i + n]) for i in range(0, len(sentences), n)]
"""
def load_text(file_path: str) -> Union[str, None]:
try:
with open(file_path, "r", encoding="utf-8") as f:
content = f.read()
logger.info(f"Successfully loaded the file: {file_path}")
return content
except FileNotFoundError:
logger.error(f"File not found: {file_path}")
except PermissionError:
logger.error(f"Permission denied to read the file: {file_path}")
except Exception as e:
logger.error(
f"An unexpected error occurred while reading the file: {file_path}. Error: {e}")
return None
# Good for just exploring random voices
"""
def split_by_random(text: str, n: int) -> List[str]:
words = text.split()
chunks = []
min_len = max(1, n - 2)
max_len = n + 2
while words:
chunk_len = random.randint(min_len, max_len)
chunk = ' '.join(words[:chunk_len])
chunks.append(chunk)
words = words[chunk_len:]
return chunks
"""
# too many libraries, removing
"""
def split_by_phrase(text: str, nlp, min_duration=8, max_duration=18, words_per_second=2.3) -> list:
if text is None:
return ''
doc = nlp(text)
chunks = []
min_words = int(min_duration * words_per_second)
max_words = int(max_duration * words_per_second)
current_chunk = ""
current_word_count = 0
for sent in doc.sents:
word_count = len(sent.text.split())
if current_word_count + word_count < min_words:
current_chunk += " " + sent.text.strip()
current_word_count += word_count
elif current_word_count + word_count <= max_words:
current_chunk += " " + sent.text.strip()
chunks.append(current_chunk.strip())
current_chunk = ""
current_word_count = 0
else:
# Emergency cutoff
words = sent.text.split()
while words:
chunk_len = max_words - current_word_count
chunk = ' '.join(words[:chunk_len])
current_chunk += " " + chunk
chunks.append(current_chunk.strip())
current_chunk = ""
current_word_count = 0
words = words[chunk_len:]
if current_chunk:
chunks.append(current_chunk.strip())
return chunks
"""
"""
def split_by_rhymes(text: str, n: int) -> List[str]:
words = text.split()
chunks = []
current_chunk = []
rhyming_word_count = 0
for word in words:
current_chunk.append(word)
if any(rhyme_word in words for rhyme_word in rhymes(word)):
rhyming_word_count += 1
if rhyming_word_count >= n:
chunks.append(' '.join(current_chunk))
current_chunk = []
rhyming_word_count = 0
if current_chunk:
chunks.append(' '.join(current_chunk))
return chunks
"""
# 'NN' for noun. 'VB' for verb. 'JJ' for adjective. 'RB' for adverb.
# NN-VV Noun followed by a verb
# JJR, JJS
# UH = Interjection, Goodbye Goody Gosh Wow Jeepers Jee-sus Hubba Hey Kee-reist Oops amen huh howdy uh dammit whammo shucks heck anyways whodunnit honey golly man baby diddle hush sonuvabitch ...
"""
def split_by_part_of_speech(text: str, pos_pattern: str) -> List[str]:
tokens = word_tokenize(text)
tagged_tokens = pos_tag(tokens)
pos_pattern = pos_pattern.split('-')
original_pos_pattern = pos_pattern.copy()
chunks = []
current_chunk = []
for word, pos in tagged_tokens:
current_chunk.append(word)
if pos in pos_pattern:
pos_index = pos_pattern.index(pos)
if pos_index == 0:
pos_pattern.pop(0)
else:
current_chunk = current_chunk[:-1]
pos_pattern = original_pos_pattern.copy()
if not pos_pattern:
chunks.append(' '.join(current_chunk))
current_chunk = [word]
pos_pattern = original_pos_pattern.copy()
if current_chunk:
chunks.append(' '.join(current_chunk))
return chunks
"""