Spaces:
Runtime error
Runtime error
import contextlib | |
import gc | |
import os | |
import re | |
import random | |
from encodec import EncodecModel | |
import funcy | |
import numpy as np | |
from scipy.special import softmax | |
import torch | |
import math | |
from scipy.spatial import distance | |
import torch.distributions as torch_distributions | |
import torch.nn.functional as F | |
import tqdm | |
from transformers import BertTokenizer | |
from huggingface_hub import hf_hub_download | |
from .model import GPTConfig, GPT | |
from .model_fine import FineGPT, FineGPTConfig | |
import traceback | |
import sys | |
import time | |
import math | |
from rich.pretty import pprint | |
from .config import logger, load_all_defaults | |
from huggingface_hub import hf_hub_url | |
from collections import Counter | |
from devtools import debug | |
from collections import defaultdict | |
def _cast_bool_env_var(s): | |
return s.lower() in ("true", "1", "t") | |
def get_SUNO_USE_DIRECTML(): | |
if _cast_bool_env_var(os.environ.get("SUNO_USE_DIRECTML", "False")): | |
return True | |
kwargs = {} | |
defaults = load_all_defaults(*kwargs) | |
if defaults["SUNO_USE_DIRECTML"] is True: | |
return True | |
else: | |
return False | |
SUNO_USE_DIRECTML = get_SUNO_USE_DIRECTML() | |
dml = None | |
if SUNO_USE_DIRECTML is True: | |
print(f" --->> Experimental AMD DirectML support enabled.") | |
import torch_directml | |
torch.cuda.is_available = lambda: False | |
dml = torch_directml.device() | |
if ( | |
torch.cuda.is_available() | |
and hasattr(torch.cuda, "amp") | |
and hasattr(torch.cuda.amp, "autocast") | |
and hasattr(torch.cuda, "is_bf16_supported") | |
and torch.cuda.is_bf16_supported() | |
): | |
# print(f" --->> Experimental NVIDIA BF16 support enabled.") | |
autocast = funcy.partial(torch.cuda.amp.autocast, dtype=torch.bfloat16) | |
else: | |
def autocast(): | |
yield | |
# hold models in global scope to lazy load | |
global models | |
models = {} | |
global models_devices | |
models_devices = {} | |
CONTEXT_WINDOW_SIZE = 1024 | |
SEMANTIC_RATE_HZ = 49.9 | |
SEMANTIC_VOCAB_SIZE = 10_000 | |
CODEBOOK_SIZE = 1024 | |
N_COARSE_CODEBOOKS = 2 | |
N_FINE_CODEBOOKS = 8 | |
COARSE_RATE_HZ = 75 | |
SAMPLE_RATE = 24_000 | |
SUPPORTED_LANGS = [ | |
("English", "en"), | |
("German", "de"), | |
("Spanish", "es"), | |
("French", "fr"), | |
("Hindi", "hi"), | |
("Italian", "it"), | |
("Japanese", "ja"), | |
("Korean", "ko"), | |
("Polish", "pl"), | |
("Portuguese", "pt"), | |
("Russian", "ru"), | |
("Turkish", "tr"), | |
("Chinese", "zh"), | |
] | |
ALLOWED_PROMPTS = {"announcer"} | |
for _, lang in SUPPORTED_LANGS: | |
for prefix in ("", f"v2{os.path.sep}"): | |
for n in range(10): | |
ALLOWED_PROMPTS.add(f"{prefix}{lang}_speaker_{n}") | |
SUPPORTED_LANGS = [ | |
("English", "en"), | |
("German", "de"), | |
("Spanish", "es"), | |
("French", "fr"), | |
("Hindi", "hi"), | |
("Italian", "it"), | |
("Japanese", "ja"), | |
("Korean", "ko"), | |
("Polish", "pl"), | |
("Portuguese", "pt"), | |
("Russian", "ru"), | |
("Turkish", "tr"), | |
("Chinese", "zh"), | |
] | |
ALLOWED_PROMPTS = {"announcer"} | |
for _, lang in SUPPORTED_LANGS: | |
for prefix in ("", f"v2{os.path.sep}"): | |
for n in range(10): | |
ALLOWED_PROMPTS.add(f"{prefix}{lang}_speaker_{n}") | |
CUR_PATH = os.path.dirname(os.path.abspath(__file__)) | |
default_cache_dir = os.path.join(os.path.expanduser("~"), ".cache") | |
CACHE_DIR = os.path.join(os.getenv("XDG_CACHE_HOME", default_cache_dir), "suno", "bark_v0") | |
USE_SMALL_MODELS = _cast_bool_env_var(os.environ.get("SUNO_USE_SMALL_MODELS", "False")) | |
GLOBAL_ENABLE_MPS = _cast_bool_env_var(os.environ.get("SUNO_ENABLE_MPS", "False")) | |
OFFLOAD_CPU = _cast_bool_env_var(os.environ.get("SUNO_OFFLOAD_CPU", "False")) | |
# Slower, possibly lower quality, but more memory efficient | |
SUNO_HALF_PRECISION = _cast_bool_env_var(os.environ.get("SUNO_HALF_PRECISION", "False")) | |
# Slower, possibly lower quality, but more memory efficient | |
SUNO_HALF_BFLOAT16 = _cast_bool_env_var(os.environ.get("SUNO_HALF_BFLOAT16", "False")) | |
SUNO_DISABLE_COMPILE = _cast_bool_env_var(os.environ.get("SUNO_DISABLE_COMPILE", "False")) | |
if sys.platform == "win32": | |
SUNO_DISABLE_COMPILE = True | |
if SUNO_USE_DIRECTML is True: | |
OFFLOAD_CPU = False | |
OFFLOAD_CPU = False | |
REMOTE_MODEL_PATHS = { | |
"text_small": { | |
"repo_id": "suno/bark", | |
"file_name": "text.pt", | |
}, | |
"coarse_small": { | |
"repo_id": "suno/bark", | |
"file_name": "coarse.pt", | |
}, | |
"fine_small": { | |
"repo_id": "suno/bark", | |
"file_name": "fine.pt", | |
}, | |
"text": { | |
"repo_id": "suno/bark", | |
"file_name": "text_2.pt", | |
}, | |
"coarse": { | |
"repo_id": "suno/bark", | |
"file_name": "coarse_2.pt", | |
}, | |
"fine": { | |
"repo_id": "suno/bark", | |
"file_name": "fine_2.pt", | |
}, | |
} | |
if not hasattr(torch.nn.functional, "scaled_dot_product_attention") and torch.cuda.is_available(): | |
logger.warning( | |
"torch version does not support flash attention. You will get faster" | |
+ " inference speed by upgrade torch to newest nightly version." | |
) | |
def _grab_best_device(use_gpu=True): | |
if torch.cuda.device_count() > 0 and use_gpu: | |
device = "cuda" | |
elif torch.backends.mps.is_available() and use_gpu and GLOBAL_ENABLE_MPS: | |
device = "mps" | |
else: | |
device = "cpu" | |
return device | |
def _get_ckpt_path(model_type, use_small=False): | |
key = model_type | |
if use_small or USE_SMALL_MODELS: | |
key += "_small" | |
return os.path.join(CACHE_DIR, REMOTE_MODEL_PATHS[key]["file_name"]) | |
def _download(from_hf_path, file_name): | |
os.makedirs(CACHE_DIR, exist_ok=True) | |
hf_hub_download(repo_id=from_hf_path, filename=file_name, local_dir=CACHE_DIR) | |
class InferenceContext: | |
def __init__(self, benchmark=False): | |
# we can't expect inputs to be the same length, so disable benchmarking by default | |
self._chosen_cudnn_benchmark = benchmark | |
self._cudnn_benchmark = None | |
def __enter__(self): | |
self._cudnn_benchmark = torch.backends.cudnn.benchmark | |
torch.backends.cudnn.benchmark = self._chosen_cudnn_benchmark | |
def __exit__(self, exc_type, exc_value, exc_traceback): | |
torch.backends.cudnn.benchmark = self._cudnn_benchmark | |
if torch.cuda.is_available(): | |
torch.backends.cuda.matmul.allow_tf32 = True | |
torch.backends.cudnn.allow_tf32 = True | |
def _inference_mode(): | |
if SUNO_USE_DIRECTML is True: | |
with InferenceContext(), torch.inference_mode(mode=False), torch.no_grad(), autocast(): | |
yield | |
else: | |
with InferenceContext(), torch.inference_mode(), torch.no_grad(), autocast(): | |
yield | |
def _clear_cuda_cache(): | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
torch.cuda.synchronize() | |
def clean_models(model_key=None): | |
global models | |
model_keys = [model_key] if model_key is not None else list(models.keys()) | |
for k in model_keys: | |
if k in models: | |
del models[k] | |
_clear_cuda_cache() | |
gc.collect() | |
def _load_codec_model(device): | |
model = EncodecModel.encodec_model_24khz() | |
model.set_target_bandwidth(6.0) | |
model.eval() | |
print_loading_info("codec", "EncodecModelPath", device) | |
if SUNO_USE_DIRECTML is True: | |
model.to(dml) | |
else: | |
model.to(device) | |
if callable(getattr(torch, "compile")) and not SUNO_DISABLE_COMPILE: | |
logger.info("torch.compile available, compiling codec model.") | |
model = torch.compile(model) | |
else: | |
logger.info( | |
"torch.compile *not* available, you will get better performance if you use pytorch >= 2.0." | |
) | |
_clear_cuda_cache() | |
return model | |
def load_codec_model(use_gpu=True, force_reload=False): | |
global models | |
global models_devices | |
device = _grab_best_device(use_gpu=use_gpu) | |
if device == "mps": | |
# encodec doesn't support mps | |
device = "cpu" | |
model_key = "codec" | |
if OFFLOAD_CPU: | |
models_devices[model_key] = device | |
device = "cpu" | |
if model_key not in models or force_reload: | |
clean_models(model_key=model_key) | |
model = _load_codec_model(device) | |
models[model_key] = model | |
if SUNO_USE_DIRECTML is True: | |
models[model_key].to(dml) | |
else: | |
models[model_key].to(device) | |
return models[model_key] | |
#### | |
# Generation Functionality | |
#### | |
def _tokenize(tokenizer, text): | |
return tokenizer.encode(text, add_special_tokens=False) | |
def _detokenize(tokenizer, enc_text): | |
return tokenizer.decode(enc_text) | |
def _normalize_whitespace(text): | |
return re.sub(r"\s+", " ", text).strip() | |
TEXT_ENCODING_OFFSET = 10_048 | |
SEMANTIC_PAD_TOKEN = 10_000 | |
TEXT_PAD_TOKEN = 129_595 | |
SEMANTIC_INFER_TOKEN = 129_599 | |
def _load_history_prompt(history_prompt_input): | |
if isinstance(history_prompt_input, str) and history_prompt_input.endswith(".npz"): | |
history_prompt = np.load(history_prompt_input) | |
elif isinstance(history_prompt_input, str): | |
# make sure this works on non-ubuntu | |
history_prompt_input = os.path.join(*history_prompt_input.split("/")) | |
if history_prompt_input not in ALLOWED_PROMPTS: | |
raise ValueError("history prompt not found") | |
history_prompt = np.load( | |
os.path.join(CUR_PATH, "assets", "prompts", f"{history_prompt_input}.npz") | |
) | |
elif isinstance(history_prompt_input, dict): | |
assert "semantic_prompt" in history_prompt_input | |
assert "coarse_prompt" in history_prompt_input | |
assert "fine_prompt" in history_prompt_input | |
history_prompt = history_prompt_input | |
else: | |
raise ValueError("history prompt format unrecognized") | |
return history_prompt | |
def compute_log_probs(token_list, smoothing_factor, scaling_factor): | |
# Count the frequency of each token. | |
token_freq = Counter(token_list) | |
# Add a smoothing factor. | |
smoothed_token_freq = {token: freq + smoothing_factor for token, freq in token_freq.items()} | |
# Normalize to create a probability distribution. | |
total_tokens = len(token_list) + smoothing_factor * len(smoothed_token_freq) | |
token_probs = {token: freq / total_tokens for token, freq in smoothed_token_freq.items()} | |
# Transform into scaled log-probabilities. | |
log_probs = {token: scaling_factor * np.log(prob) for token, prob in token_probs.items()} | |
return log_probs | |
def estimate_s_this_seems_wrong_so_many_math_crashes(prob): | |
epsilon = 1e-10 | |
num = 0 | |
den = 0 | |
for i in range( | |
min(len(prob), 10000) | |
): # apparently any number is fine here but they paper was on natural language so maybe not for us? | |
# for i in range(768): | |
b = prob[i] / (prob[i + 1] + epsilon) | |
t = (i + 2) / (i + 1) | |
if b > 0 and t > 0: | |
num += math.log(b) * math.log(t) | |
den += math.log(t) ** 2 | |
return num / den if den != 0 else 0 | |
def estimate_s(prob): | |
epsilon = 1e-10 | |
num = 0 | |
den = 0 | |
# for i in range(3000): | |
# in the paper they say 100 is as good as any higher number? But it's not slow so maybe leave it higher? | |
# also in the paper they don't have catch divide by 0s though... | |
# also the paper was on natural language so maybe not for us. Let's just max it out | |
for i in range(min(len(prob), 10000)): | |
b = prob[i] / (prob[i + 1] + epsilon) | |
t = (i + 2) / (i + 1) | |
if b > 0 and t > 0: | |
num += math.log(b if b > 0 else 1) * math.log(t if t > 0 else 1) | |
# den += math.log(t)**2 | |
den += math.log(t if t > 0 else 1) ** 2 | |
# ok NOW this should never be zero and feels more right | |
return num / den | |
# return num / den if den != 0 else 0 # or should this be float("inf") ? doesn't seem right. | |
def compute_k_original_paper(n, s, tau): | |
print(f"n: {n}, s: {s}, tau: {tau}") | |
eps = s - 1 | |
k = ((eps * (2 ** (tau))) / (1 - n ** (-eps))) ** (1 / s) | |
k = round(k) | |
return k | |
def compute_k(n, s, tau, max_k): | |
try: | |
eps = s - 1 | |
n_eps = n ** (-eps) | |
if s <= 0: | |
return 0 | |
tau_s = tau ** (1 / s) | |
k = (eps * 2 * tau_s / (1 - n_eps)) ** (1 / s) | |
if isinstance(k, complex): | |
return 0 | |
k = round(k) | |
if k > max_k: | |
return max_k | |
return k | |
except OverflowError: | |
# Return maximum possible k | |
return max_k | |
def compute_k_orig(n, s, tau): | |
print(f"n: {n}, s: {s}, tau: {tau}") | |
eps = s - 1 | |
k = ((eps * (2 ** (tau))) / (1 - n ** (-eps))) ** (1 / s) | |
k = round(k) | |
return k | |
def compute_k_not_right(n, s, tau, max_k): | |
print(f"n: {n}, s: {s}, tau: {tau}") | |
try: | |
eps = s - 1 | |
n_eps = n ** (-eps) | |
if s <= 0: | |
return max_k | |
tau_s = tau ** (1 / s) | |
k = (eps * 2 * tau_s / (1 - n_eps)) ** (1 / s) | |
k = round(k) | |
return k | |
except OverflowError: | |
# Return maximum possible k | |
return max_k | |
def compute_k_log(n, s, tau): | |
print(f"n: {n}, s: {s}, tau: {tau}") | |
eps = s - 1 | |
try: | |
log_k = (math.log(eps) + tau * math.log(2) - math.log(1 - n ** (-eps))) / s | |
k = round(math.exp(log_k)) | |
except OverflowError: | |
k = float("inf") | |
return k | |
# https://github.com/basusourya/mirostat/blob/master/mirostat.py | |
# try adjusting target tau dynamically based on just length even? Could you shape the "energy" of the clip? | |
def mirostat_sampling_v1( | |
logits=None, | |
tau=5.0, | |
learning_rate=1.0, | |
max_surprise=None, | |
vocab_size=SEMANTIC_VOCAB_SIZE, | |
indices_surprise_history=[], | |
running_tot_surprise=0.0, | |
generated=[], | |
): | |
sorted_logits, sorted_indices = torch.sort(logits, descending=True) | |
prob_original = torch.softmax(sorted_logits, dim=-1).tolist() | |
s = estimate_s(prob_original) | |
max_k = len(sorted_logits) - 1 | |
k = compute_k(vocab_size, s, max_surprise, max_k) + 1 | |
print(f"\n\nK: {k} s: {s} tau: {max_surprise}") | |
sorted_logits = sorted_logits[0:k] | |
sorted_indices = sorted_indices[0:k] | |
prob_topk = torch.softmax(sorted_logits, dim=0) | |
prev_i = torch.multinomial(prob_topk, num_samples=1, replacement=True) | |
index_surprise = math.log2(1 / prob_original[prev_i]) | |
print(f"index_surprise: {index_surprise}") | |
indices_surprise_history.append(index_surprise) | |
running_tot_surprise += index_surprise | |
prev = sorted_indices[prev_i] | |
generated += prev.tolist() | |
error_surprise = index_surprise - tau | |
max_surprise -= learning_rate * error_surprise | |
# full_probs = torch.zeros_like(logits) # 0? or -inf? | |
full_probs = torch.empty_like(logits).fill_(-float("inf")) | |
full_probs[sorted_indices] = prob_topk.to(full_probs.dtype) | |
return ( | |
sorted_indices[prev_i], | |
max_surprise, | |
full_probs, | |
indices_surprise_history, | |
running_tot_surprise, | |
generated, | |
) | |
def mirostat_sampling_meh( | |
logits=None, | |
tau=5.0, | |
learning_rate=1.0, | |
max_surprise=None, | |
vocab_size=SEMANTIC_VOCAB_SIZE, | |
indices_surprise_history=[], | |
running_tot_surprise=0.0, | |
generated=[], | |
): | |
sorted_logits, sorted_indices = torch.sort(logits, descending=True) | |
prob_original = torch.softmax(sorted_logits, dim=-1).tolist() | |
s = estimate_s(prob_original) | |
max_k = len(sorted_logits) - 1 | |
k = compute_k(vocab_size, s, max_surprise, max_k) + 1 | |
print(f"\n\nK: {k} s: {s} tau: {max_surprise}") | |
sorted_logits = sorted_logits[0:k] | |
sorted_indices = sorted_indices[0:k] | |
prob_topk = torch.softmax(sorted_logits, dim=0) | |
prev_i = torch.multinomial(prob_topk, num_samples=1, replacement=True) | |
index_surprise = math.log2(1 / prob_original[sorted_indices[prev_i].item()]) | |
print(f"index_surprise: {index_surprise}") | |
indices_surprise_history.append(index_surprise) | |
running_tot_surprise += index_surprise | |
prev = sorted_indices[prev_i] | |
generated += prev.tolist() | |
error_surprise = index_surprise - tau | |
max_surprise -= learning_rate * error_surprise | |
full_probs = torch.empty_like(logits).fill_(-float("inf")) | |
full_probs[sorted_indices] = prob_topk.to(full_probs.dtype) | |
item_next = sorted_indices[prev_i] | |
return ( | |
item_next, | |
max_surprise, | |
full_probs, | |
indices_surprise_history, | |
running_tot_surprise, | |
generated, | |
) | |
def mirostat_sampling_least( | |
logits=None, | |
tau=5.0, | |
learning_rate=1.0, | |
max_surprise=None, | |
vocab_size=SEMANTIC_VOCAB_SIZE, | |
indices_surprise_history=[], | |
running_tot_surprise=0.0, | |
generated=[], | |
): | |
sorted_logits, sorted_indices = torch.sort(logits, descending=True) | |
prob_original = torch.softmax(sorted_logits, dim=-1).tolist() | |
s = estimate_s(prob_original) | |
max_k = len(sorted_logits) - 1 | |
k = compute_k(vocab_size, s, max_surprise, max_k) + 1 | |
print(f"\n\nK: {k} s: {s} tau: {max_surprise}") | |
sorted_logits = sorted_logits[0:k] | |
sorted_indices = sorted_indices[0:k] | |
prob_topk = torch.softmax(sorted_logits, dim=0) | |
prev_i = torch.argmin(prob_topk).unsqueeze(0) | |
index_surprise = math.log2(1 / prob_original[sorted_indices[prev_i].item()]) | |
print(f"index_surprise: {index_surprise}") | |
indices_surprise_history.append(index_surprise) | |
running_tot_surprise += index_surprise | |
prev = sorted_indices[prev_i] | |
generated += prev.tolist() | |
error_surprise = index_surprise - tau | |
max_surprise -= learning_rate * error_surprise | |
full_probs = torch.empty_like(logits).fill_(-float("inf")) | |
full_probs[sorted_indices] = prob_topk.to(full_probs.dtype) | |
# Return least likely token and reverse generated logits | |
# return sorted_indices[prev_i], max_surprise, torch.flip(full_probs, dims=[0]), indices_surprise_history, running_tot_surprise, generated | |
return ( | |
sorted_indices[prev_i], | |
max_surprise, | |
full_probs, | |
indices_surprise_history, | |
running_tot_surprise, | |
generated, | |
) | |
def sine_wave_temperature(current_token, max_token): | |
return 3.0 + 2.1 * (math.sin(2 * math.pi * (current_token / 150)) / 2.1 + 0.2) | |
def sine_wave_temperature(current_token, max_token, period=100, phase_shift=0): | |
return 0.5 + 2.0 * (math.sin(2 * math.pi * (current_token / period) + phase_shift) / 2 + 0.5) | |
def sine_wave_temperature(current_token, token_period, start_phase, temp_min, temp_max): | |
phase = 2 * math.pi * ((current_token + start_phase) / token_period) | |
temp_range = temp_max - temp_min | |
return temp_min + temp_range * ((math.sin(phase) / 2) + 0.5) | |
def mirostat_sampling( | |
logits=None, | |
tau=5.0, | |
learning_rate=1.0, | |
max_surprise=None, | |
vocab_size=SEMANTIC_VOCAB_SIZE, | |
indices_surprise_history=[], | |
running_tot_surprise=0, | |
generated=[], | |
temperature_fn=None, | |
): | |
sorted_logits, sorted_indices = torch.sort(logits, descending=True) | |
prob_original = torch.softmax(sorted_logits, dim=-1).tolist() | |
s = estimate_s(prob_original) | |
max_k = len(sorted_logits) - 1 | |
k = compute_k(vocab_size, s, max_surprise, max_k) + 1 | |
sorted_logits = sorted_logits[0:k] | |
sorted_indices = sorted_indices[0:k] | |
# Current location in the segment | |
current_token = len(generated) | |
max_token = 768 # Maximum sample length | |
if temperature_fn is not None: | |
temp = temperature_fn(current_token, max_token) | |
sorted_logits = torch.clamp(sorted_logits, -10000, 10000) | |
# Apply to logits before softmax | |
prob_topk = torch.softmax(sorted_logits / temp, dim=0) | |
prob_topk = torch.clamp(prob_topk, 1e-9, 1 - 1e-9) # Ensures probabilities are valid | |
else: | |
prob_topk = torch.softmax(sorted_logits, dim=0) | |
prev_i = torch.multinomial(prob_topk, num_samples=1, replacement=True) | |
epsilon = 1e-10 | |
index_surprise = math.log2(1 / (prob_original[sorted_indices[prev_i].item()] + epsilon)) | |
indices_surprise_history.append(index_surprise) | |
running_tot_surprise += index_surprise | |
prev = sorted_indices[prev_i] | |
generated += prev.tolist() | |
error_surprise = index_surprise - tau | |
max_surprise -= learning_rate * error_surprise | |
full_probs = torch.empty_like(logits).fill_(-float("inf")) | |
full_probs[sorted_indices] = prob_topk.to(full_probs.dtype) | |
if current_token % 25 == 0 and False: | |
print(f"Temperature: {temp}") | |
print(f"index_surprise: {index_surprise}") | |
print(f"\n\nK: {k} s: {s} tau: {max_surprise}") | |
return ( | |
sorted_indices[prev_i], | |
max_surprise, | |
full_probs, | |
indices_surprise_history, | |
running_tot_surprise, | |
generated, | |
) | |
cdevice = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
def compute_negative_influence(negative_logits, n, window_size, negative_scale): | |
# negative_logits is list of tensors | |
# we could calculate a local "negative influence" based on the tokens in negative_logits near position n. | |
# calculate the negative influence as a weighted average of the logits in negative_logits around position n, where the weights decrease the farther you get from n | |
# This code takes a window of logits around position n in negative_logits, weights them by their distance from n, and averages them to compute the negative influence. | |
# Check if negative_logits is empty | |
if len(negative_logits) == 0: | |
return 0 | |
# Ensure n is within range | |
n = min(max(n, 0), len(negative_logits) - 1) | |
# Adjust window_size if it's larger than negative_logits length | |
window_size = min(window_size, len(negative_logits)) | |
# Get the start and end of the window | |
start = max(0, n - window_size) | |
end = min(len(negative_logits), n + window_size + 1) | |
# Move tensors to the specified device | |
negative_logits = [logit.to(cdevice) for logit in negative_logits] | |
n = torch.tensor(n).to(cdevice) | |
window_size = torch.tensor(window_size).to(cdevice) | |
negative_scale = torch.tensor(negative_scale).to(cdevice) | |
# Generate a Gaussian distribution for the weights and normalize them | |
weights = torch.exp( | |
-((torch.arange(start, end).to(cdevice) - n) ** 2) / (2.0 * window_size**2) | |
) | |
weights /= weights.sum() | |
weights = weights.view(-1, 1) | |
negative_influence = torch.stack(negative_logits[start:end]).mul(weights).sum(0) | |
# Adjust the influence by the negative_scale | |
negative_scale = min( | |
max(negative_scale.item(), 0), 1 | |
) # Ensure negative_scale is between 0 and 1 | |
negative_influence *= negative_scale | |
# print(f"Negative influence: {negative_influence}") | |
return negative_influence | |
def fast_compute_negative_influence(negative_logits, window_size, negative_scale): | |
if len(negative_logits) == 0: | |
return 0 | |
window_size = min(window_size, len(negative_logits)) | |
negative_logits = torch.stack(negative_logits).unsqueeze(0).permute(0, 2, 1) | |
# Gaussian distribution for weights and norma | |
weights = torch.exp( | |
-((torch.arange(-window_size, window_size + 1).to(cdevice)) ** 2) / (2.0 * window_size**2) | |
) | |
weights /= weights.sum() | |
# Reshape weights tensor for convolution | |
# weights = weights.repeat(negative_logits.shape[1], 1).unsqueeze(1) | |
weights = weights.repeat(1, negative_logits.shape[1], 1) | |
# Compute cumulative sum of weighted logits | |
cum_logits = ( | |
torch.nn.functional.conv1d(negative_logits, weights.flip(dims=[2]), padding=window_size) | |
.squeeze(0) | |
.permute(1, 0) | |
) | |
negative_scale = min(max(negative_scale, 0), 1) # Ensure negative_scale is between 0 and 1 | |
cum_logits *= negative_scale | |
# print(f"Cumulative negative influence: {cum_logits}") | |
return cum_logits | |
def generate_text_semantic( | |
text, | |
history_prompt=None, | |
temp=0.7, | |
top_k=None, | |
top_p=None, | |
silent=False, | |
min_eos_p=0.2, | |
max_gen_duration_s=None, | |
allow_early_stop=True, | |
use_kv_caching=True, | |
semantic_use_mirostat_sampling=False, | |
# semantic_mirostat_tau = 31100.0, | |
semantic_mirostat_tau=5.0, | |
semantic_mirostat_learning_rate=1.0, | |
semantic_token_repeat_penalty=0.0, | |
semantic_inverted_p=None, | |
semantic_bottom_k=None, | |
return_logits=False, | |
negative_tokens=None, | |
negative_logits=None, | |
negative_text_prompt_logits_scale=None, | |
negative_text_prompt_logits_sliding_scale=None, | |
negative_text_prompt_logits_scale_window_size=164, | |
negative_text_prompt_divergence_scale=None, | |
): | |
"""Generate semantic tokens from text.""" | |
all_logits = None | |
if return_logits: | |
all_logits = [] | |
if temp == 0: | |
temp = 0.001 | |
# debug(locals()) | |
logger.debug(locals()) | |
assert isinstance(text, str) | |
text = _normalize_whitespace(text) | |
# assert len(text.strip()) > 0 | |
if history_prompt is not None: | |
history_prompt = _load_history_prompt(history_prompt) | |
semantic_history = history_prompt["semantic_prompt"] | |
assert ( | |
isinstance(semantic_history, np.ndarray) | |
and len(semantic_history.shape) == 1 | |
and len(semantic_history) > 0 | |
and semantic_history.min() >= 0 | |
and semantic_history.max() <= SEMANTIC_VOCAB_SIZE - 1 | |
) | |
else: | |
semantic_history = None | |
# load models if not yet exist | |
global models | |
global models_devices | |
if "text" not in models: | |
if SUNO_USE_DIRECTML is True: | |
preload_models(load_one_model_type="text") | |
else: | |
preload_models() | |
model_container = models["text"] | |
model = model_container["model"] | |
tokenizer = model_container["tokenizer"] | |
encoded_text = np.array(_tokenize(tokenizer, text)) + TEXT_ENCODING_OFFSET | |
if OFFLOAD_CPU: | |
if GLOBAL_ENABLE_MPS: | |
device = _grab_best_device(use_gpu=False) | |
models_devices["text"] = device | |
model.to(models_devices["text"]) | |
device = next(model.parameters()).device | |
if len(encoded_text) > 256: | |
p = round((len(encoded_text) - 256) / len(encoded_text) * 100, 1) | |
logger.warning(f"warning, text too long, lopping of last {p}%") | |
encoded_text = encoded_text[:256] | |
encoded_text = np.pad( | |
encoded_text, | |
(0, 256 - len(encoded_text)), | |
constant_values=TEXT_PAD_TOKEN, | |
mode="constant", | |
) | |
if semantic_history is not None: | |
semantic_history = semantic_history.astype(np.int64) | |
# print(f"Actual length of semantic input: {len(semantic_history)}") | |
# lop off if history is too long, pad if needed | |
semantic_history = semantic_history[-256:] | |
semantic_history = np.pad( | |
semantic_history, | |
(0, 256 - len(semantic_history)), | |
constant_values=SEMANTIC_PAD_TOKEN, | |
mode="constant", | |
) | |
else: | |
semantic_history = np.array([SEMANTIC_PAD_TOKEN] * 256) | |
x = torch.from_numpy( | |
np.hstack([encoded_text, semantic_history, np.array([SEMANTIC_INFER_TOKEN])]).astype( | |
np.int64 | |
) | |
)[None] | |
assert x.shape[1] == 256 + 256 + 1 | |
with _inference_mode(): | |
if SUNO_USE_DIRECTML is True: | |
device = dml | |
x = x.to(device) | |
n_tot_steps = 768 | |
# preallocate tensor | |
x_initial = x.shape[1] | |
x = torch.hstack([x, torch.empty([1, n_tot_steps], dtype=torch.int32, device=device)]) | |
# custom tqdm updates since we don't know when eos will occur | |
pbar = tqdm.tqdm(disable=silent, total=n_tot_steps) | |
pbar_state = 0 | |
tot_generated_duration_s = 0 | |
kv_cache = None | |
# mirostat | |
prev = None | |
max_surprise = 2 * semantic_mirostat_tau | |
indices_surprise_history = [] | |
running_tot_surprise = 0.0 | |
miro_generated = [] # debug | |
token_counts = defaultdict(int) | |
cum_negative_influence = None | |
if negative_logits is not None and negative_text_prompt_logits_sliding_scale is not None: | |
cum_negative_influence = fast_compute_negative_influence( | |
negative_logits, | |
negative_text_prompt_logits_scale_window_size, | |
negative_text_prompt_logits_scale, | |
) | |
# print(f"Shape of cum_negative_influence: {cum_negative_influence.shape}") | |
# Shape of cum_negative_influence: torch.Size([1, 10001]) | |
for n in range(n_tot_steps): | |
# if use_kv_caching and kv_cache is not None: | |
# x_input = x[:, [-1]] | |
# else: | |
# x_input = x | |
x_input = ( | |
x[:, [x_initial + n - 1]] | |
if use_kv_caching and kv_cache is not None | |
else x[:, : x_initial + n] | |
) | |
logits, kv_cache = model( | |
x_input, merge_context=True, use_cache=use_kv_caching, past_kv=kv_cache | |
) | |
relevant_logits = logits[0, 0, :SEMANTIC_VOCAB_SIZE] | |
if allow_early_stop: | |
relevant_logits = torch.hstack( | |
(relevant_logits, logits[0, 0, [SEMANTIC_PAD_TOKEN]]) # eos | |
) | |
# Detach and convert to numpy for faster calculations | |
original_device = relevant_logits.device | |
relevant_logits = relevant_logits.detach().cpu().type(torch.float32).numpy() | |
# Jon doing some silly here | |
if top_p is not None or semantic_inverted_p is not None: | |
if semantic_inverted_p is not None: | |
sorted_indices = np.argsort(relevant_logits) | |
cumulative_limit = semantic_inverted_p | |
elif top_p is not None: | |
sorted_indices = np.argsort(relevant_logits)[::-1] | |
cumulative_limit = top_p | |
sorted_logits = relevant_logits[sorted_indices] | |
cumulative_probs = np.cumsum(softmax(sorted_logits)) | |
sorted_indices_to_remove = cumulative_probs > cumulative_limit | |
sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].copy() | |
sorted_indices_to_remove[0] = False | |
relevant_logits[sorted_indices[sorted_indices_to_remove]] = -np.inf | |
relevant_logits = torch.from_numpy(relevant_logits) | |
relevant_logits = relevant_logits.to(original_device) | |
if top_k is not None or semantic_bottom_k is not None: | |
if semantic_bottom_k is not None: | |
v, _ = torch.topk( | |
relevant_logits, | |
max(semantic_bottom_k, relevant_logits.size(-1)), | |
largest=False, | |
) | |
relevant_logits[relevant_logits > v[-1]] = -float("Inf") | |
elif top_k is not None: | |
v, _ = torch.topk(relevant_logits, min(top_k, relevant_logits.size(-1))) | |
relevant_logits[relevant_logits < v[-1]] = -float("Inf") | |
if semantic_use_mirostat_sampling: | |
logits_for_miro = relevant_logits / temp | |
( | |
item_next, | |
max_surprise, | |
probs, | |
indices_surprise_history, | |
running_tot_surprise, | |
miro_generated, | |
) = mirostat_sampling( | |
logits=logits_for_miro, | |
max_surprise=max_surprise, | |
tau=semantic_mirostat_tau, | |
learning_rate=semantic_mirostat_learning_rate, | |
vocab_size=SEMANTIC_VOCAB_SIZE, | |
indices_surprise_history=indices_surprise_history, | |
running_tot_surprise=running_tot_surprise, | |
generated=miro_generated, | |
temperature_fn=None, | |
) | |
# item_next = item_next.to(torch.int32) | |
else: | |
if semantic_token_repeat_penalty != 0.0 and semantic_token_repeat_penalty != 1.0: | |
for token, count in token_counts.items(): | |
relevant_logits[token] += math.log(semantic_token_repeat_penalty) * count | |
if return_logits: | |
all_logits.append(relevant_logits) | |
if negative_logits is not None: | |
# debug(negative_logits) | |
# Compute the negative influence | |
neg_n = n - 1 | |
if neg_n >= len(negative_logits): | |
neg_n = -1 | |
if ( | |
cum_negative_influence is not None | |
and negative_text_prompt_logits_sliding_scale is not None | |
and negative_text_prompt_logits_sliding_scale > 0 | |
): | |
negative_influence_torch = cum_negative_influence[neg_n] | |
negative_influence_torch = negative_influence_torch.squeeze() | |
relevant_logits -= negative_influence_torch | |
elif ( | |
negative_text_prompt_divergence_scale is not None | |
and negative_text_prompt_divergence_scale > 0 | |
): | |
negative_probs = ( | |
F.softmax(negative_logits[neg_n], dim=-1).cpu().detach().numpy() | |
) | |
positive_probs = F.softmax(relevant_logits, dim=-1).cpu().detach().numpy() | |
divergence = negative_text_prompt_divergence_scale * distance.jensenshannon( | |
negative_probs, positive_probs | |
) | |
relevant_logits -= ( | |
torch.tensor(divergence).to(device) * negative_logits[neg_n] | |
) | |
elif ( | |
negative_text_prompt_logits_scale is not None | |
and negative_text_prompt_logits_scale > 0 | |
): | |
relevant_logits -= ( | |
negative_text_prompt_logits_scale * negative_logits[neg_n] | |
) | |
relevant_logits = torch.where( | |
torch.isfinite(relevant_logits), | |
relevant_logits, | |
torch.tensor(-1e10).to(device), | |
) | |
probs = F.softmax(relevant_logits / temp, dim=-1) | |
item_next = torch.multinomial(probs, num_samples=1).to(torch.int32) | |
if allow_early_stop and ( | |
item_next == SEMANTIC_VOCAB_SIZE | |
or (min_eos_p is not None and probs[-1] >= min_eos_p) | |
): | |
n -= 1 # backtrack 1 | |
# eos found, so break | |
pbar.total = n | |
pbar.update(n - pbar_state) | |
break | |
# x = torch.cat((x, item_next[None]), dim=1) | |
if semantic_token_repeat_penalty != 0.0 and semantic_token_repeat_penalty != 1.0: | |
token_counts[int(item_next)] += 1 | |
x[0][x_initial + n] = item_next | |
tot_generated_duration_s += 1 / SEMANTIC_RATE_HZ | |
if max_gen_duration_s is not None and tot_generated_duration_s > max_gen_duration_s: | |
pbar.total = n | |
pbar.update(n - pbar_state) | |
break | |
if n == n_tot_steps - 1: | |
pbar.total = n | |
pbar.update(n - pbar_state) | |
break | |
del logits, relevant_logits, probs, item_next | |
if n > pbar_state: | |
if n > pbar.total: | |
pbar.total = n | |
pbar.update(n - pbar_state) | |
pbar_state = n | |
pbar.total = n | |
pbar.refresh() | |
pbar.close() | |
# out = x.detach().cpu().numpy().squeeze()[256 + 256 + 1 :] | |
out = x.detach().cpu().numpy().squeeze()[x_initial : x_initial + n + 1] | |
if semantic_use_mirostat_sampling and False: | |
print(f"Target tau: {semantic_mirostat_tau}") | |
print("Total surprise value:", sum(indices_surprise_history)) | |
print("Average surprise value:", sum(indices_surprise_history) / len(out)) | |
print(f"Generated Miro: {miro_generated}") | |
print(f"out: {out}") | |
if OFFLOAD_CPU: | |
model.to("cpu") | |
assert all(0 <= out) and all(out < SEMANTIC_VOCAB_SIZE) | |
_clear_cuda_cache() | |
if SUNO_USE_DIRECTML is True: | |
clean_models() | |
if return_logits: | |
return out, all_logits | |
else: | |
return out | |
def generate_text_semantic_branching_not_batching( | |
text, | |
history_prompt=None, | |
temp=0.7, | |
top_k=None, | |
top_p=None, | |
silent=False, | |
min_eos_p=0.2, | |
max_gen_duration_s=None, | |
allow_early_stop=True, | |
use_kv_caching=True, | |
num_sample_per_step=2, | |
): | |
"""Generate semantic tokens from text.""" | |
assert isinstance(text, str) | |
text = _normalize_whitespace(text) | |
assert len(text.strip()) > 0 | |
if history_prompt is not None: | |
history_prompt = _load_history_prompt(history_prompt) | |
semantic_history = history_prompt["semantic_prompt"] | |
assert ( | |
isinstance(semantic_history, np.ndarray) | |
and len(semantic_history.shape) == 1 | |
and len(semantic_history) > 0 | |
and semantic_history.min() >= 0 | |
and semantic_history.max() <= SEMANTIC_VOCAB_SIZE - 1 | |
) | |
else: | |
semantic_history = None | |
# load models if not yet exist | |
global models | |
global models_devices | |
if "text" not in models: | |
if SUNO_USE_DIRECTML is True: | |
preload_models(load_one_model_type="text") | |
else: | |
preload_models() | |
model_container = models["text"] | |
model = model_container["model"] | |
tokenizer = model_container["tokenizer"] | |
encoded_text = np.array(_tokenize(tokenizer, text)) + TEXT_ENCODING_OFFSET | |
if OFFLOAD_CPU: | |
model.to(models_devices["text"]) | |
device = next(model.parameters()).device | |
if len(encoded_text) > 256: | |
p = round((len(encoded_text) - 256) / len(encoded_text) * 100, 1) | |
logger.warning(f"warning, text too long, lopping of last {p}%") | |
encoded_text = encoded_text[:256] | |
encoded_text = np.pad( | |
encoded_text, | |
(0, 256 - len(encoded_text)), | |
constant_values=TEXT_PAD_TOKEN, | |
mode="constant", | |
) | |
if semantic_history is not None: | |
semantic_history = semantic_history.astype(np.int64) | |
# lop off if history is too long, pad if needed | |
semantic_history = semantic_history[-256:] | |
semantic_history = np.pad( | |
semantic_history, | |
(0, 256 - len(semantic_history)), | |
constant_values=SEMANTIC_PAD_TOKEN, | |
mode="constant", | |
) | |
else: | |
semantic_history = np.array([SEMANTIC_PAD_TOKEN] * 256) | |
# x = torch.from_numpy( | |
# np.hstack([ | |
# encoded_text, semantic_history, np.array([SEMANTIC_INFER_TOKEN]) | |
# ]).astype(np.int64) | |
# )[None] | |
x = torch.from_numpy( | |
np.hstack([encoded_text, semantic_history, np.array([SEMANTIC_INFER_TOKEN])]).astype( | |
np.int64 | |
) | |
).repeat(num_sample_per_step, 1) | |
assert x.shape[1] == 256 + 256 + 1 | |
with _inference_mode(): | |
x = x.to(device) | |
n_tot_steps = 768 | |
# custom tqdm updates since we don't know when eos will occur | |
pbar = tqdm.tqdm(disable=silent, total=n_tot_steps) | |
pbar_state = 0 | |
tot_generated_duration_s = 0 | |
kv_cache = None | |
for n in range(n_tot_steps): | |
if use_kv_caching and kv_cache is not None: | |
x_input = x[:, [-1]] | |
else: | |
x_input = x | |
logits, kv_cache = model( | |
x_input, merge_context=True, use_cache=use_kv_caching, past_kv=kv_cache | |
) | |
relevant_logits = logits[0, 0, :SEMANTIC_VOCAB_SIZE] | |
if allow_early_stop: | |
relevant_logits = torch.hstack( | |
(relevant_logits, logits[0, 0, [SEMANTIC_PAD_TOKEN]]) # eos | |
) | |
if top_p is not None: | |
# faster to convert to numpy | |
original_device = relevant_logits.device | |
relevant_logits = relevant_logits.detach().cpu().type(torch.float32).numpy() | |
sorted_indices = np.argsort(relevant_logits)[::-1] | |
sorted_logits = relevant_logits[sorted_indices] | |
cumulative_probs = np.cumsum(softmax(sorted_logits)) | |
sorted_indices_to_remove = cumulative_probs > top_p | |
sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].copy() | |
sorted_indices_to_remove[0] = False | |
relevant_logits[sorted_indices[sorted_indices_to_remove]] = -np.inf | |
relevant_logits = torch.from_numpy(relevant_logits) | |
relevant_logits = relevant_logits.to(original_device) | |
if top_k is not None: | |
v, _ = torch.topk(relevant_logits, min(top_k, relevant_logits.size(-1))) | |
relevant_logits[relevant_logits < v[-1]] = -float("Inf") | |
# probs = F.softmax(relevant_logits / temp, dim=-1) | |
# item_next = torch.multinomial(probs, num_samples=1).to(torch.int32) | |
probs = F.softmax(relevant_logits / temp, dim=-1) | |
item_next = torch.multinomial(probs, num_samples=num_sample_per_step).to(torch.int32) | |
if allow_early_stop and ( | |
item_next == SEMANTIC_VOCAB_SIZE | |
or (min_eos_p is not None and probs[-1] >= min_eos_p) | |
): | |
# eos found, so break | |
pbar.update(n - pbar_state) | |
break | |
# x = torch.cat((x, item_next[None]), dim=1) | |
for i in range(num_sample_per_step): | |
x[i] = torch.cat((x[i], item_next[i][None]), dim=0) | |
tot_generated_duration_s += 1 / SEMANTIC_RATE_HZ | |
if max_gen_duration_s is not None and tot_generated_duration_s > max_gen_duration_s: | |
pbar.update(n - pbar_state) | |
break | |
if n == n_tot_steps - 1: | |
pbar.update(n - pbar_state) | |
break | |
del logits, relevant_logits, probs, item_next | |
if n > pbar_state: | |
if n > pbar.total: | |
pbar.total = n | |
pbar.update(n - pbar_state) | |
pbar_state = n | |
pbar.total = n | |
pbar.refresh() | |
pbar.close() | |
out = x.detach().cpu().numpy().squeeze()[256 + 256 + 1 :] | |
if OFFLOAD_CPU: | |
model.to("cpu") | |
assert all(0 <= out) and all(out < SEMANTIC_VOCAB_SIZE) | |
_clear_cuda_cache() | |
return out | |
def generate_coarse( | |
x_semantic, | |
history_prompt=None, | |
temp=0.7, | |
top_k=None, | |
top_p=None, | |
silent=False, | |
max_coarse_history=630, # min 60 (faster), max 630 (more context) | |
sliding_window_len=60, | |
use_kv_caching=True, | |
x_coarse_history_alignment_hack=-2, | |
): | |
"""Generate coarse audio codes from semantic tokens.""" | |
logger.debug(locals()) | |
assert ( | |
isinstance(x_semantic, np.ndarray) | |
and len(x_semantic.shape) == 1 | |
and len(x_semantic) > 0 | |
and x_semantic.min() >= 0 | |
and x_semantic.max() <= SEMANTIC_VOCAB_SIZE - 1 | |
) | |
assert 60 <= max_coarse_history <= 630 | |
assert max_coarse_history + sliding_window_len <= 1024 - 256 | |
semantic_to_coarse_ratio = COARSE_RATE_HZ / SEMANTIC_RATE_HZ * N_COARSE_CODEBOOKS | |
max_semantic_history = int(np.floor(max_coarse_history / semantic_to_coarse_ratio)) | |
if history_prompt is not None: | |
history_prompt = _load_history_prompt(history_prompt) | |
x_semantic_history = history_prompt["semantic_prompt"] | |
x_coarse_history = history_prompt["coarse_prompt"] | |
# print(f"Pre Trim sem coars: {x_semantic_history.shape} {x_coarse_history.shape}") | |
assert ( | |
isinstance(x_semantic_history, np.ndarray) | |
and len(x_semantic_history.shape) == 1 | |
and len(x_semantic_history) > 0 | |
and x_semantic_history.min() >= 0 | |
and x_semantic_history.max() <= SEMANTIC_VOCAB_SIZE - 1 | |
and isinstance(x_coarse_history, np.ndarray) | |
and len(x_coarse_history.shape) == 2 | |
and x_coarse_history.shape[0] == N_COARSE_CODEBOOKS | |
and x_coarse_history.shape[-1] >= 0 | |
and x_coarse_history.min() >= 0 | |
and x_coarse_history.max() <= CODEBOOK_SIZE - 1 | |
and ( | |
round(x_coarse_history.shape[-1] / len(x_semantic_history), 1) | |
== round(semantic_to_coarse_ratio / N_COARSE_CODEBOOKS, 1) | |
) | |
) | |
x_coarse_history = _flatten_codebooks(x_coarse_history) + SEMANTIC_VOCAB_SIZE | |
# trim histories correctly | |
n_semantic_hist_provided = np.min( | |
[ | |
max_semantic_history, | |
len(x_semantic_history) - len(x_semantic_history) % 2, | |
int(np.floor(len(x_coarse_history) / semantic_to_coarse_ratio)), | |
] | |
) | |
n_coarse_hist_provided = int(round(n_semantic_hist_provided * semantic_to_coarse_ratio)) | |
x_semantic_history = x_semantic_history[-n_semantic_hist_provided:].astype(np.int32) | |
x_coarse_history = x_coarse_history[-n_coarse_hist_provided:].astype(np.int32) | |
# TODO: bit of a hack for time alignment (sounds better) | |
# x_coarse_history = x_coarse_history[:-2] | |
x_coarse_history = x_coarse_history[:x_coarse_history_alignment_hack] | |
else: | |
x_semantic_history = np.array([], dtype=np.int32) | |
x_coarse_history = np.array([], dtype=np.int32) | |
# print(f"actual lengths we're using, x_semantic_history: {len(x_semantic_history)} x_coarse_history: {len(x_coarse_history)}") | |
# load models if not yet exist | |
global models | |
global models_devices | |
if "coarse" not in models: | |
if SUNO_USE_DIRECTML is True: | |
preload_models(load_one_model_type="coarse") | |
else: | |
preload_models() | |
model = models["coarse"] | |
if OFFLOAD_CPU: | |
if GLOBAL_ENABLE_MPS: | |
device = _grab_best_device(use_gpu=False) | |
models_devices["coarse"] = device | |
model.to(models_devices["coarse"]) | |
device = next(model.parameters()).device | |
# start loop | |
n_steps = int( | |
round( | |
np.floor(len(x_semantic) * semantic_to_coarse_ratio / N_COARSE_CODEBOOKS) | |
* N_COARSE_CODEBOOKS | |
) | |
) | |
assert n_steps > 0 and n_steps % N_COARSE_CODEBOOKS == 0 | |
# reminder to try filling up some of the COARSE_INFER_TOKEN with history to get better short clips | |
x_semantic = np.hstack([x_semantic_history, x_semantic]).astype(np.int32) | |
x_coarse = x_coarse_history.astype(np.int32) | |
base_semantic_idx = len(x_semantic_history) | |
with _inference_mode(): | |
if SUNO_USE_DIRECTML is True: | |
device = dml | |
x_semantic_in = torch.from_numpy(x_semantic)[None].to(device) | |
x_coarse_in = torch.from_numpy(x_coarse)[None].to(device) | |
n_window_steps = int(np.ceil(n_steps / sliding_window_len)) | |
n_step = 0 | |
for _ in tqdm.tqdm(range(n_window_steps), total=n_window_steps, disable=silent): | |
semantic_idx = base_semantic_idx + int(round(n_step / semantic_to_coarse_ratio)) | |
# pad from right side | |
x_in = x_semantic_in[:, np.max([0, semantic_idx - max_semantic_history]) :] | |
x_in = x_in[:, :256] | |
x_in = F.pad( | |
x_in, | |
(0, 256 - x_in.shape[-1]), | |
"constant", | |
COARSE_SEMANTIC_PAD_TOKEN, | |
) | |
x_in = torch.hstack( | |
[ | |
x_in, | |
torch.tensor([COARSE_INFER_TOKEN])[None].to(device), | |
x_coarse_in[:, -max_coarse_history:], | |
] | |
) | |
kv_cache = None | |
for _ in range(sliding_window_len): | |
if n_step >= n_steps: | |
continue | |
is_major_step = n_step % N_COARSE_CODEBOOKS == 0 | |
if use_kv_caching and kv_cache is not None: | |
x_input = x_in[:, [-1]] | |
else: | |
x_input = x_in | |
logits, kv_cache = model(x_input, use_cache=use_kv_caching, past_kv=kv_cache) | |
logit_start_idx = SEMANTIC_VOCAB_SIZE + (1 - int(is_major_step)) * CODEBOOK_SIZE | |
logit_end_idx = SEMANTIC_VOCAB_SIZE + (2 - int(is_major_step)) * CODEBOOK_SIZE | |
relevant_logits = logits[0, 0, logit_start_idx:logit_end_idx] | |
if top_p is not None: | |
# faster to convert to numpy | |
logits_device = relevant_logits.device | |
logits_dtype = relevant_logits.type() | |
relevant_logits = relevant_logits.detach().cpu().type(torch.float32).numpy() | |
sorted_indices = np.argsort(relevant_logits)[::-1] | |
sorted_logits = relevant_logits[sorted_indices] | |
cumulative_probs = np.cumsum(softmax(sorted_logits)) | |
sorted_indices_to_remove = cumulative_probs > top_p | |
sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].copy() | |
sorted_indices_to_remove[0] = False | |
relevant_logits[sorted_indices[sorted_indices_to_remove]] = -np.inf | |
relevant_logits = torch.from_numpy(relevant_logits) | |
relevant_logits = relevant_logits.to(logits_device).type(logits_dtype) | |
if top_k is not None: | |
v, _ = torch.topk(relevant_logits, min(top_k, relevant_logits.size(-1))) | |
relevant_logits[relevant_logits < v[-1]] = -float("Inf") | |
probs = F.softmax(relevant_logits / temp, dim=-1) | |
# multinomial bugged on mps: shuttle to cpu if necessary | |
inf_device = probs.device | |
if probs.device.type == "mps": | |
probs = probs.to("cpu") | |
item_next = torch.multinomial(probs, num_samples=1) | |
probs = probs.to(inf_device) | |
item_next = item_next.to(inf_device) | |
item_next += logit_start_idx | |
x_coarse_in = torch.cat((x_coarse_in, item_next[None]), dim=1) | |
x_in = torch.cat((x_in, item_next[None]), dim=1) | |
del logits, relevant_logits, probs, item_next | |
n_step += 1 | |
del x_in | |
del x_semantic_in | |
if OFFLOAD_CPU: | |
model.to("cpu") | |
gen_coarse_arr = x_coarse_in.detach().cpu().numpy().squeeze()[len(x_coarse_history) :] | |
del x_coarse_in | |
assert len(gen_coarse_arr) == n_steps | |
gen_coarse_audio_arr = gen_coarse_arr.reshape(-1, N_COARSE_CODEBOOKS).T - SEMANTIC_VOCAB_SIZE | |
for n in range(1, N_COARSE_CODEBOOKS): | |
gen_coarse_audio_arr[n, :] -= n * CODEBOOK_SIZE | |
_clear_cuda_cache() | |
if SUNO_USE_DIRECTML is True: | |
clean_models() | |
return gen_coarse_audio_arr | |
def generate_coarse_amd_directml( | |
x_semantic, | |
history_prompt=None, | |
temp=0.7, | |
top_k=None, | |
top_p=None, | |
silent=False, | |
max_coarse_history=630, # min 60 (faster), max 630 (more context) | |
sliding_window_len=60, | |
use_kv_caching=True, | |
x_coarse_history_alignment_hack=-2, | |
): | |
"""Generate coarse audio codes from semantic tokens.""" | |
logger.debug(locals()) | |
assert ( | |
isinstance(x_semantic, np.ndarray) | |
and len(x_semantic.shape) == 1 | |
and len(x_semantic) > 0 | |
and x_semantic.min() >= 0 | |
and x_semantic.max() <= SEMANTIC_VOCAB_SIZE - 1 | |
) | |
assert 60 <= max_coarse_history <= 630 | |
assert max_coarse_history + sliding_window_len <= 1024 - 256 | |
semantic_to_coarse_ratio = COARSE_RATE_HZ / SEMANTIC_RATE_HZ * N_COARSE_CODEBOOKS | |
max_semantic_history = int(np.floor(max_coarse_history / semantic_to_coarse_ratio)) | |
if history_prompt is not None: | |
history_prompt = _load_history_prompt(history_prompt) | |
x_semantic_history = history_prompt["semantic_prompt"] | |
x_coarse_history = history_prompt["coarse_prompt"] | |
assert ( | |
isinstance(x_semantic_history, np.ndarray) | |
and len(x_semantic_history.shape) == 1 | |
and len(x_semantic_history) > 0 | |
and x_semantic_history.min() >= 0 | |
and x_semantic_history.max() <= SEMANTIC_VOCAB_SIZE - 1 | |
and isinstance(x_coarse_history, np.ndarray) | |
and len(x_coarse_history.shape) == 2 | |
and x_coarse_history.shape[0] == N_COARSE_CODEBOOKS | |
and x_coarse_history.shape[-1] >= 0 | |
and x_coarse_history.min() >= 0 | |
and x_coarse_history.max() <= CODEBOOK_SIZE - 1 | |
and ( | |
round(x_coarse_history.shape[-1] / len(x_semantic_history), 1) | |
== round(semantic_to_coarse_ratio / N_COARSE_CODEBOOKS, 1) | |
) | |
) | |
x_coarse_history = _flatten_codebooks(x_coarse_history) + SEMANTIC_VOCAB_SIZE | |
# trim histories correctly | |
n_semantic_hist_provided = np.min( | |
[ | |
max_semantic_history, | |
len(x_semantic_history) - len(x_semantic_history) % 2, | |
int(np.floor(len(x_coarse_history) / semantic_to_coarse_ratio)), | |
] | |
) | |
n_coarse_hist_provided = int(round(n_semantic_hist_provided * semantic_to_coarse_ratio)) | |
x_semantic_history = x_semantic_history[-n_semantic_hist_provided:].astype(np.int32) | |
x_coarse_history = x_coarse_history[-n_coarse_hist_provided:].astype(np.int32) | |
# TODO: bit of a hack for time alignment (sounds better) | |
x_coarse_history = x_coarse_history[:-2] | |
else: | |
x_semantic_history = np.array([], dtype=np.int32) | |
x_coarse_history = np.array([], dtype=np.int32) | |
# load models if not yet exist | |
global models | |
global models_devices | |
if "coarse" not in models: | |
if SUNO_USE_DIRECTML is True: | |
preload_models(load_one_model_type="coarse") | |
else: | |
preload_models() | |
model = models["coarse"] | |
if OFFLOAD_CPU: | |
if GLOBAL_ENABLE_MPS: | |
device = _grab_best_device(use_gpu=False) | |
models_devices["coarse"] = device | |
model.to(models_devices["coarse"]) | |
# device = next(model.parameters()).device | |
# start loop | |
n_steps = int( | |
round( | |
np.floor(len(x_semantic) * semantic_to_coarse_ratio / N_COARSE_CODEBOOKS) | |
* N_COARSE_CODEBOOKS | |
) | |
) | |
assert n_steps > 0 and n_steps % N_COARSE_CODEBOOKS == 0 | |
x_semantic = np.hstack([x_semantic_history, x_semantic]).astype(np.int32) | |
x_coarse = x_coarse_history.astype(np.int32) | |
base_semantic_idx = len(x_semantic_history) | |
cumulative_time = 0 | |
with _inference_mode(): | |
try: | |
# x_semantic_in = torch.from_numpy(x_semantic)[None].to(dml) | |
x_semantic_in_np = x_semantic[None] | |
# x_coarse_in = torch.from_numpy(x_coarse)[None].to(dml) | |
x_coarse_in_np = x_coarse[None] | |
n_window_steps = int(np.ceil(n_steps / sliding_window_len)) | |
n_step = 0 | |
for _ in tqdm.tqdm(range(n_window_steps), total=n_window_steps, disable=silent): | |
semantic_idx = base_semantic_idx + int(round(n_step / semantic_to_coarse_ratio)) | |
# pad from right side | |
x_in_np = x_semantic_in_np[:, np.max([0, semantic_idx - max_semantic_history]) :] | |
x_in_np = x_in_np[:, :256] | |
""" | |
x_in_np = F.pad( | |
x_in_np, | |
(0, 256 - x_in_np.shape[-1]), | |
"constant", | |
COARSE_SEMANTIC_PAD_TOKEN, | |
) | |
""" | |
np_pad_size = ((0, 0), (0, 256 - x_in_np.shape[-1])) | |
x_in_np = np.pad( | |
x_in_np, | |
np_pad_size, | |
constant_values=COARSE_SEMANTIC_PAD_TOKEN, | |
mode="constant", | |
) | |
""" | |
x_in = torch.hstack( | |
[ | |
x_in, | |
torch.tensor([COARSE_INFER_TOKEN])[None].to(dml), | |
x_coarse_in[:, -max_coarse_history:], | |
] | |
) | |
""" | |
coarse_infer_token_np = np.array([COARSE_INFER_TOKEN])[None] | |
x_in_np = np.hstack( | |
[ | |
x_in_np, | |
coarse_infer_token_np, | |
x_coarse_in_np[:, -max_coarse_history:], | |
] | |
) | |
kv_cache = None | |
for _ in range(sliding_window_len): | |
if n_step >= n_steps: | |
continue | |
is_major_step = n_step % N_COARSE_CODEBOOKS == 0 | |
if use_kv_caching and kv_cache is not None: | |
x_input = x_in_np[:, [-1]] | |
else: | |
x_input = x_in_np | |
x_input_tensor = torch.from_numpy(x_input).to(dml) | |
logits, kv_cache = model( | |
x_input_tensor, use_cache=use_kv_caching, past_kv=kv_cache | |
) | |
logit_start_idx = SEMANTIC_VOCAB_SIZE + (1 - int(is_major_step)) * CODEBOOK_SIZE | |
logit_end_idx = SEMANTIC_VOCAB_SIZE + (2 - int(is_major_step)) * CODEBOOK_SIZE | |
relevant_logits = logits[0, 0, logit_start_idx:logit_end_idx] | |
if top_p is not None: | |
# faster to convert to numpy | |
# original_device = relevant_logits.device | |
relevant_logits = relevant_logits.detach().cpu().type(torch.float32).numpy() | |
sorted_indices = np.argsort(relevant_logits)[::-1] | |
sorted_logits = relevant_logits[sorted_indices] | |
cumulative_probs = np.cumsum(softmax(sorted_logits)) | |
sorted_indices_to_remove = cumulative_probs > top_p | |
sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].copy() | |
sorted_indices_to_remove[0] = False | |
relevant_logits[sorted_indices[sorted_indices_to_remove]] = -np.inf | |
relevant_logits = torch.from_numpy(relevant_logits) | |
# relevant_logits = relevant_logits.to(original_device) | |
# stay as numpy, since we converted for directml anyway... | |
if top_k is not None: | |
v, _ = torch.topk( | |
relevant_logits.to(dml), | |
min(top_k, relevant_logits.to(dml).size(-1)), | |
) | |
relevant_logits[relevant_logits < v[-1]] = -float("Inf") | |
# probs = F.softmax(relevant_logits.to(dml) / temp, dim=-1) | |
start_time = time.time() | |
# item_next = torch.multinomial(probs, num_samples=1).to(torch.int32) | |
probs_np = ( | |
F.softmax(relevant_logits.to(dml) / temp, dim=-1) | |
.cpu() | |
.type(torch.float32) | |
.numpy() | |
) | |
item_next_np = np.random.choice( | |
np.arange(probs_np.shape[-1]), size=1, p=probs_np.flatten() | |
) | |
# item_next = torch.from_numpy(item_next_np).to(torch.int32).to(dml) | |
# doing in raw numpy same speed with AMD directML, but maybe faster if you setup MKL correctly? | |
# actually tha wasn't quite righ anyway... | |
end_time = time.time() | |
cumulative_time = cumulative_time + (end_time - start_time) | |
# amd_multinomial = torch_distributions.Categorical(probs) | |
# action = amd_multinomial.sample((1,)) | |
# item_next = amd_multinomial.log_prob(action).to(torch.int32) | |
# multinomial bugged on mps: shuttle to cpu if necessary | |
# inf_device = probs.device | |
# if probs.device.type == "mps" or True: | |
# probs = probs.to("cpu") | |
# # print(f"Here in coarse: {probs.device}") | |
# item_next = torch.multinomial(probs, num_samples=1) | |
# probs = probs.to(inf_device) | |
# item_next = item_next.to(inf_device) | |
item_next_np += logit_start_idx | |
x_coarse_in_np = np.hstack((x_coarse_in_np, item_next_np[None])) | |
# x_coarse_in = torch.from_numpy(x_coarse_in_np).to(dml) | |
# x_in = torch.cat((x_in_np.to(dml), item_next_np[None]), dim=1) | |
x_in_np = np.hstack((x_in_np, item_next_np[None])) | |
del logits, relevant_logits, probs_np, item_next_np | |
n_step += 1 | |
del x_in_np | |
del x_semantic_in_np | |
except RuntimeError as e: | |
print(f"RuntimeError: {e}") | |
# show all possble details and traceback, print to output | |
print(f"Traceback: {traceback.format_exc()}") # and print(sys.exc_info()[2]) | |
print(f"Exception: {sys.exc_info()[2]}") | |
if OFFLOAD_CPU: | |
model.to("cpu") | |
gen_coarse_arr = x_coarse_in_np.squeeze()[len(x_coarse_history) :] | |
del x_coarse_in_np | |
assert len(gen_coarse_arr) == n_steps | |
gen_coarse_audio_arr = gen_coarse_arr.reshape(-1, N_COARSE_CODEBOOKS).T - SEMANTIC_VOCAB_SIZE | |
for n in range(1, N_COARSE_CODEBOOKS): | |
gen_coarse_audio_arr[n, :] -= n * CODEBOOK_SIZE | |
_clear_cuda_cache() | |
if SUNO_USE_DIRECTML is True: | |
clean_models() | |
return gen_coarse_audio_arr | |
def generate_fine( | |
x_coarse_gen, | |
history_prompt=None, | |
temp=0.5, | |
silent=True, | |
): | |
if temp == 0: | |
temp = 0.001 | |
"""Generate full audio codes from coarse audio codes.""" | |
assert ( | |
isinstance(x_coarse_gen, np.ndarray) | |
and len(x_coarse_gen.shape) == 2 | |
and 1 <= x_coarse_gen.shape[0] <= N_FINE_CODEBOOKS - 1 | |
and x_coarse_gen.shape[1] > 0 | |
and x_coarse_gen.min() >= 0 | |
and x_coarse_gen.max() <= CODEBOOK_SIZE - 1 | |
) | |
if history_prompt is not None: | |
history_prompt = _load_history_prompt(history_prompt) | |
x_fine_history = history_prompt["fine_prompt"] | |
assert ( | |
isinstance(x_fine_history, np.ndarray) | |
and len(x_fine_history.shape) == 2 | |
and x_fine_history.shape[0] == N_FINE_CODEBOOKS | |
and x_fine_history.shape[1] >= 0 | |
and x_fine_history.min() >= 0 | |
and x_fine_history.max() <= CODEBOOK_SIZE - 1 | |
) | |
else: | |
x_fine_history = None | |
n_coarse = x_coarse_gen.shape[0] | |
# load models if not yet exist | |
global models | |
global models_devices | |
if "fine" not in models: | |
if SUNO_USE_DIRECTML is True: | |
preload_models(load_one_model_type="fine") | |
else: | |
preload_models() | |
model = models["fine"] | |
if OFFLOAD_CPU: | |
if GLOBAL_ENABLE_MPS: | |
device = _grab_best_device(use_gpu=False) | |
models_devices["fine"] = device | |
model.to(models_devices["fine"]) | |
device = next(model.parameters()).device | |
# make input arr | |
in_arr = np.vstack( | |
[ | |
x_coarse_gen, | |
np.zeros((N_FINE_CODEBOOKS - n_coarse, x_coarse_gen.shape[1])) | |
+ CODEBOOK_SIZE, # padding | |
] | |
).astype(np.int32) | |
# prepend history if available (max 512) | |
if x_fine_history is not None: | |
x_fine_history = x_fine_history.astype(np.int32) | |
in_arr = np.hstack( | |
[ | |
x_fine_history[:, -512:].astype(np.int32), | |
in_arr, | |
] | |
) | |
n_history = x_fine_history[:, -512:].shape[1] | |
else: | |
n_history = 0 | |
n_remove_from_end = 0 | |
# need to pad if too short (since non-causal model) | |
if in_arr.shape[1] < 1024: | |
n_remove_from_end = 1024 - in_arr.shape[1] | |
in_arr = np.hstack( | |
[ | |
in_arr, | |
np.zeros((N_FINE_CODEBOOKS, n_remove_from_end), dtype=np.int32) + CODEBOOK_SIZE, | |
] | |
) | |
# we can be lazy about fractional loop and just keep overwriting codebooks | |
n_loops = np.max([0, int(np.ceil((x_coarse_gen.shape[1] - (1024 - n_history)) / 512))]) + 1 | |
with _inference_mode(): | |
if SUNO_USE_DIRECTML is True: | |
device = dml | |
in_arr = torch.tensor(in_arr.T).to(device) | |
for n in tqdm.tqdm(range(n_loops), disable=silent): | |
start_idx = np.min([n * 512, in_arr.shape[0] - 1024]) | |
start_fill_idx = np.min([n_history + n * 512, in_arr.shape[0] - 512]) | |
rel_start_fill_idx = start_fill_idx - start_idx | |
in_buffer = in_arr[start_idx : start_idx + 1024, :][None] | |
for nn in range(n_coarse, N_FINE_CODEBOOKS): | |
logits = model(nn, in_buffer) | |
if temp is None: | |
relevant_logits = logits[0, rel_start_fill_idx:, :CODEBOOK_SIZE] | |
codebook_preds = torch.argmax(relevant_logits, -1) | |
else: | |
relevant_logits = logits[0, :, :CODEBOOK_SIZE] / temp | |
probs = F.softmax(relevant_logits, dim=-1) | |
codebook_preds = torch.multinomial( | |
probs[rel_start_fill_idx:1024], num_samples=1 | |
).reshape(-1) | |
codebook_preds = codebook_preds.to(torch.int32) | |
in_buffer[0, rel_start_fill_idx:, nn] = codebook_preds | |
del logits, codebook_preds | |
# transfer over info into model_in and convert to numpy | |
for nn in range(n_coarse, N_FINE_CODEBOOKS): | |
in_arr[ | |
start_fill_idx : start_fill_idx + (1024 - rel_start_fill_idx), nn | |
] = in_buffer[0, rel_start_fill_idx:, nn] | |
del in_buffer | |
gen_fine_arr = in_arr.detach().cpu().numpy().squeeze().T | |
del in_arr | |
if OFFLOAD_CPU: | |
model.to("cpu") | |
gen_fine_arr = gen_fine_arr[:, n_history:] | |
if n_remove_from_end > 0: | |
gen_fine_arr = gen_fine_arr[:, :-n_remove_from_end] | |
assert gen_fine_arr.shape[-1] == x_coarse_gen.shape[-1] | |
_clear_cuda_cache() | |
if SUNO_USE_DIRECTML is True: | |
clean_models() | |
return gen_fine_arr | |
def _flatten_codebooks(arr, offset_size=CODEBOOK_SIZE): | |
assert len(arr.shape) == 2 | |
arr = arr.copy() | |
if offset_size is not None: | |
for n in range(1, arr.shape[0]): | |
arr[n, :] += offset_size * n | |
flat_arr = arr.ravel("F") | |
return flat_arr | |
COARSE_SEMANTIC_PAD_TOKEN = 12_048 | |
COARSE_INFER_TOKEN = 12_050 | |
def codec_decode(fine_tokens): | |
"""Turn quantized audio codes into audio array using encodec.""" | |
# load models if not yet exist | |
global models | |
global models_devices | |
if "codec" not in models: | |
if SUNO_USE_DIRECTML is True: | |
preload_models(load_one_model_type="codec") | |
else: | |
preload_models() | |
model = models["codec"] | |
if OFFLOAD_CPU: | |
if GLOBAL_ENABLE_MPS: | |
device = _grab_best_device(use_gpu=False) | |
models_devices["codec"] = device | |
model.to(models_devices["codec"]) | |
device = next(model.parameters()).device | |
arr = torch.from_numpy(fine_tokens)[None] | |
if SUNO_USE_DIRECTML is True: | |
arr = arr.to(dml) | |
else: | |
arr = arr.to(device) | |
arr = arr.transpose(0, 1) | |
emb = model.quantizer.decode(arr) | |
out = model.decoder(emb) | |
audio_arr = out.detach().cpu().numpy().squeeze() | |
del arr, emb, out | |
if OFFLOAD_CPU: | |
model.to("cpu") | |
if SUNO_USE_DIRECTML is True: | |
clean_models() | |
return audio_arr | |
## Added: | |
# Just overriding this because somehow I keep loading the wrong models? | |
def load_model(use_gpu=True, use_small=False, force_reload=False, model_type="text"): | |
logger.debug(locals()) | |
_load_model_f = funcy.partial(_load_model, model_type=model_type, use_small=use_small) | |
if model_type not in ("text", "coarse", "fine"): | |
raise NotImplementedError() | |
global models | |
global models_devices | |
device = _grab_best_device(use_gpu=use_gpu) | |
model_key = f"{model_type}" | |
if OFFLOAD_CPU: | |
models_devices[model_key] = device | |
device = "cpu" | |
if model_key not in models or force_reload: | |
ckpt_path = _get_ckpt_path(model_type, use_small=use_small) | |
clean_models(model_key=model_key) | |
model = _load_model_f(ckpt_path, device) | |
models[model_key] = model | |
if model_type == "text": | |
if SUNO_USE_DIRECTML is True: | |
models[model_key]["model"].to(dml) | |
else: | |
models[model_key]["model"].to(device) | |
else: | |
if SUNO_USE_DIRECTML is True: | |
models[model_key].to(dml) | |
else: | |
models[model_key].to(device) | |
logger.debug(f"Loaded {model_key} onto {device}.") | |
return models[model_key] | |
def print_loading_info(model_key, ckpt_path, device): | |
device_str = str(device) | |
if SUNO_USE_DIRECTML is True: | |
device_str = "directml (partial AMD GPU support)" | |
if GLOBAL_ENABLE_MPS: | |
device_str = "cpu/mps: Partial Apple Support" | |
if OFFLOAD_CPU: | |
device_str = "cpu/gpu: Offloading, cpu until needed, then gpu" | |
print(f"--Loading {model_key} model from {ckpt_path} to {device_str}") | |
def _load_model(ckpt_path, device, use_small=False, model_type="text"): | |
if model_type == "text": | |
ConfigClass = GPTConfig | |
ModelClass = GPT | |
elif model_type == "coarse": | |
ConfigClass = GPTConfig | |
ModelClass = GPT | |
elif model_type == "fine": | |
ConfigClass = FineGPTConfig | |
ModelClass = FineGPT | |
else: | |
raise NotImplementedError() | |
model_key = f"{model_type}_small" if use_small or USE_SMALL_MODELS else model_type | |
model_info = REMOTE_MODEL_PATHS[model_key] | |
if not os.path.exists(ckpt_path): | |
logger.info(f"{model_type} model not found, downloading into `{CACHE_DIR}`.") | |
remote_filename = hf_hub_url(model_info["repo_id"], model_info["file_name"]) | |
print( | |
f"Downloading {model_key} {model_info['repo_id']} remote model file {remote_filename} {model_info['file_name']} to {CACHE_DIR}" | |
) # added | |
_download(model_info["repo_id"], model_info["file_name"]) | |
print_loading_info(model_key, ckpt_path, device) | |
# If I try to load straight to DML, I get a strange error. So doing in two steps. | |
checkpoint = torch.load(ckpt_path, map_location=device) | |
# this is a hack | |
model_args = checkpoint["model_args"] | |
if "input_vocab_size" not in model_args: | |
model_args["input_vocab_size"] = model_args["vocab_size"] | |
model_args["output_vocab_size"] = model_args["vocab_size"] | |
del model_args["vocab_size"] | |
gptconf = ConfigClass(**checkpoint["model_args"]) | |
model = ModelClass(gptconf) | |
if SUNO_HALF_PRECISION: | |
model = model.half() | |
elif SUNO_HALF_BFLOAT16: | |
model.bfloat16() | |
state_dict = checkpoint["model"] | |
# fixup checkpoint | |
unwanted_prefix = "_orig_mod." | |
for k, v in list(state_dict.items()): | |
if k.startswith(unwanted_prefix): | |
state_dict[k[len(unwanted_prefix) :]] = state_dict.pop(k) | |
extra_keys = set(state_dict.keys()) - set(model.state_dict().keys()) | |
extra_keys = set([k for k in extra_keys if not k.endswith(".attn.bias")]) | |
missing_keys = set(model.state_dict().keys()) - set(state_dict.keys()) | |
missing_keys = set([k for k in missing_keys if not k.endswith(".attn.bias")]) | |
if len(extra_keys) != 0: | |
raise ValueError(f"extra keys found: {extra_keys}") | |
if len(missing_keys) != 0: | |
raise ValueError(f"missing keys: {missing_keys}") | |
model.load_state_dict(state_dict, strict=False) | |
n_params = model.get_num_params() | |
val_loss = checkpoint["best_val_loss"].item() | |
logger.info(f"model loaded: {round(n_params/1e6,1)}M params, {round(val_loss,3)} loss") | |
model.eval() | |
if SUNO_USE_DIRECTML is True: | |
model.to(dml) | |
else: | |
model.to(device) | |
# del checkpoint, state_dict | |
del checkpoint, state_dict, model_args, val_loss | |
_clear_cuda_cache() | |
if model_type == "text": | |
tokenizer = BertTokenizer.from_pretrained("bert-base-multilingual-cased") | |
return { | |
"model": model, | |
"tokenizer": tokenizer, | |
} | |
return model | |
def preload_models( | |
text_use_gpu=True, | |
text_use_small=False, | |
coarse_use_gpu=True, | |
coarse_use_small=False, | |
fine_use_gpu=True, | |
fine_use_small=False, | |
codec_use_gpu=True, | |
force_reload=False, | |
load_one_model_type=None, | |
): | |
"""Load all the necessary models for the pipeline.""" | |
if SUNO_USE_DIRECTML is True: | |
text_use_gpu = False | |
coarse_use_gpu = False | |
fine_use_gpu = False | |
# What is going on here | |
logger.debug( | |
f"USE_SMALL_MODELS = {USE_SMALL_MODELS} GLOBAL_ENABLE_MPS = {GLOBAL_ENABLE_MPS}, OFFLOAD_CPU = {OFFLOAD_CPU}" | |
) | |
logger.debug( | |
f"text_use_gpu = {text_use_gpu}, text_use_small = {text_use_small}, coarse_use_gpu = {coarse_use_gpu}, coarse_use_small = {coarse_use_small}, fine_use_gpu = {fine_use_gpu}, fine_use_small = {fine_use_small}, codec_use_gpu = {codec_use_gpu}, force_reload = {force_reload}" | |
) | |
if USE_SMALL_MODELS: | |
text_use_small = True | |
coarse_use_small = True | |
fine_use_small = True | |
if _grab_best_device() == "cpu" and ( | |
text_use_gpu or coarse_use_gpu or fine_use_gpu or codec_use_gpu | |
): | |
warning_string = " -->No GPU being used. Careful, inference might be very slow!" | |
if SUNO_USE_DIRECTML is True: | |
warning_string = "-->GPU using DirectML (partial AMD GPU support)" | |
if GLOBAL_ENABLE_MPS: | |
warning_string = "-->cpu/mps: Partial Apple Support" | |
# logger.warning(warning_string) | |
print(f"{warning_string}") | |
if load_one_model_type is not None: | |
if load_one_model_type == "text": | |
_ = load_model( | |
model_type="text", | |
use_gpu=text_use_gpu, | |
use_small=text_use_small, | |
force_reload=force_reload, | |
) | |
elif load_one_model_type == "coarse": | |
_ = load_model( | |
model_type="coarse", | |
use_gpu=coarse_use_gpu, | |
use_small=coarse_use_small, | |
force_reload=force_reload, | |
) | |
elif load_one_model_type == "fine": | |
_ = load_model( | |
model_type="fine", | |
use_gpu=fine_use_gpu, | |
use_small=fine_use_small, | |
force_reload=force_reload, | |
) | |
elif load_one_model_type == "codec": | |
_ = load_codec_model(use_gpu=codec_use_gpu, force_reload=force_reload) | |
else: | |
_ = load_model( | |
model_type="text", | |
use_gpu=text_use_gpu, | |
use_small=text_use_small, | |
force_reload=force_reload, | |
) | |
_ = load_model( | |
model_type="coarse", | |
use_gpu=coarse_use_gpu, | |
use_small=coarse_use_small, | |
force_reload=force_reload, | |
) | |
_ = load_model( | |
model_type="fine", | |
use_gpu=fine_use_gpu, | |
use_small=fine_use_small, | |
force_reload=force_reload, | |
) | |
_ = load_codec_model(use_gpu=codec_use_gpu, force_reload=force_reload) | |