Jakaria
commited on
Commit
·
34e5a0f
1
Parent(s):
298ba53
Add Bangla model API
Browse files
app.py
CHANGED
@@ -1,218 +1,22 @@
|
|
1 |
-
from fastapi import FastAPI
|
2 |
-
from pydantic import BaseModel
|
3 |
import joblib
|
4 |
-
import os
|
5 |
-
import logging
|
6 |
-
import numpy as np
|
7 |
-
import traceback
|
8 |
-
|
9 |
-
logging.basicConfig(level=logging.INFO)
|
10 |
-
logger = logging.getLogger(__name__)
|
11 |
|
12 |
app = FastAPI()
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
model = None
|
19 |
-
vectorizer = None
|
20 |
-
label_encoder = None
|
21 |
-
models_loaded = False
|
22 |
-
|
23 |
-
def load_model_safe(filename):
|
24 |
-
"""Safely load model with multiple methods"""
|
25 |
-
if not os.path.exists(filename):
|
26 |
-
raise FileNotFoundError(f"{filename} not found")
|
27 |
-
|
28 |
-
try:
|
29 |
-
return joblib.load(filename)
|
30 |
-
except Exception as e1:
|
31 |
-
logger.warning(f"Joblib failed for {filename}: {e1}")
|
32 |
-
|
33 |
-
try:
|
34 |
-
with open(filename, 'rb') as f:
|
35 |
-
return pickle.load(f)
|
36 |
-
except Exception as e2:
|
37 |
-
logger.error(f"Pickle also failed for {filename}: {e2}")
|
38 |
-
raise e1
|
39 |
-
|
40 |
-
@app.on_event("startup")
|
41 |
-
async def startup_event():
|
42 |
-
global model, vectorizer, label_encoder, models_loaded
|
43 |
-
|
44 |
-
try:
|
45 |
-
logger.info("Loading models...")
|
46 |
-
model = load_model_safe("bangla_model.pkl")
|
47 |
-
vectorizer = load_model_safe("bangla_vectorizer.pkl")
|
48 |
-
label_encoder = load_model_safe("bangla_label_encoder.pkl")
|
49 |
-
|
50 |
-
# Test pipeline
|
51 |
-
test_vect = vectorizer.transform(["test"])
|
52 |
-
test_pred = model.predict(test_vect)
|
53 |
-
test_label = label_encoder.inverse_transform(test_pred)
|
54 |
-
|
55 |
-
models_loaded = True
|
56 |
-
logger.info("All models loaded successfully!")
|
57 |
-
|
58 |
-
except Exception as e:
|
59 |
-
logger.error(f"Failed to load models: {str(e)}")
|
60 |
-
models_loaded = False
|
61 |
|
|
|
62 |
@app.get("/")
|
63 |
def root():
|
64 |
-
return {
|
65 |
-
"message": "Bangla model API is running!",
|
66 |
-
"models_loaded": models_loaded,
|
67 |
-
"status": "healthy" if models_loaded else "models_not_loaded"
|
68 |
-
}
|
69 |
-
|
70 |
-
@app.get("/status")
|
71 |
-
def status():
|
72 |
-
return {
|
73 |
-
"models_loaded": models_loaded,
|
74 |
-
"model_available": model is not None,
|
75 |
-
"vectorizer_available": vectorizer is not None,
|
76 |
-
"label_encoder_available": label_encoder is not None,
|
77 |
-
"current_directory": os.getcwd(),
|
78 |
-
"available_files": [f for f in os.listdir('.') if f.endswith('.pkl')]
|
79 |
-
}
|
80 |
-
|
81 |
-
@app.post("/debug-predict")
|
82 |
-
def debug_predict(request: PredictRequest):
|
83 |
-
"""Debug version of predict with detailed logging"""
|
84 |
-
if not models_loaded:
|
85 |
-
raise HTTPException(status_code=503, detail="Models not loaded")
|
86 |
-
|
87 |
-
debug_info = {"steps": []}
|
88 |
-
|
89 |
-
try:
|
90 |
-
# Step 1: Input validation
|
91 |
-
debug_info["steps"].append("1. Input validation")
|
92 |
-
if not request.text or not request.text.strip():
|
93 |
-
raise HTTPException(status_code=400, detail="Text cannot be empty")
|
94 |
-
|
95 |
-
debug_info["input_text"] = request.text
|
96 |
-
debug_info["input_length"] = len(request.text)
|
97 |
-
|
98 |
-
# Step 2: Text preprocessing
|
99 |
-
debug_info["steps"].append("2. Text preprocessing")
|
100 |
-
text_to_process = request.text.strip()
|
101 |
-
debug_info["processed_text_length"] = len(text_to_process)
|
102 |
-
|
103 |
-
# Step 3: Vectorization
|
104 |
-
debug_info["steps"].append("3. Vectorization")
|
105 |
-
try:
|
106 |
-
vect = vectorizer.transform([text_to_process])
|
107 |
-
debug_info["vectorized_shape"] = vect.shape
|
108 |
-
debug_info["vectorized_nnz"] = vect.nnz
|
109 |
-
debug_info["vectorized_dtype"] = str(vect.dtype)
|
110 |
-
except Exception as e:
|
111 |
-
debug_info["vectorization_error"] = str(e)
|
112 |
-
raise HTTPException(status_code=500, detail=f"Vectorization failed: {str(e)}")
|
113 |
-
|
114 |
-
# Step 4: Model prediction
|
115 |
-
debug_info["steps"].append("4. Model prediction")
|
116 |
-
try:
|
117 |
-
pred = model.predict(vect)
|
118 |
-
debug_info["raw_prediction"] = pred.tolist() if hasattr(pred, 'tolist') else str(pred)
|
119 |
-
debug_info["prediction_type"] = str(type(pred))
|
120 |
-
debug_info["prediction_shape"] = pred.shape if hasattr(pred, 'shape') else "no shape"
|
121 |
-
except Exception as e:
|
122 |
-
debug_info["prediction_error"] = str(e)
|
123 |
-
raise HTTPException(status_code=500, detail=f"Model prediction failed: {str(e)}")
|
124 |
-
|
125 |
-
# Step 5: Label transformation
|
126 |
-
debug_info["steps"].append("5. Label transformation")
|
127 |
-
try:
|
128 |
-
# Check if prediction is in valid range
|
129 |
-
if hasattr(label_encoder, 'classes_'):
|
130 |
-
debug_info["available_classes"] = label_encoder.classes_.tolist()
|
131 |
-
debug_info["num_classes"] = len(label_encoder.classes_)
|
132 |
-
|
133 |
-
label = label_encoder.inverse_transform(pred)
|
134 |
-
debug_info["final_label"] = label[0] if len(label) > 0 else "no label"
|
135 |
-
debug_info["label_type"] = str(type(label[0])) if len(label) > 0 else "no label"
|
136 |
-
except Exception as e:
|
137 |
-
debug_info["label_transform_error"] = str(e)
|
138 |
-
raise HTTPException(status_code=500, detail=f"Label transformation failed: {str(e)}")
|
139 |
-
|
140 |
-
debug_info["steps"].append("6. Success!")
|
141 |
-
debug_info["final_prediction"] = label[0]
|
142 |
-
|
143 |
-
return debug_info
|
144 |
-
|
145 |
-
except HTTPException:
|
146 |
-
raise
|
147 |
-
except Exception as e:
|
148 |
-
debug_info["unexpected_error"] = str(e)
|
149 |
-
debug_info["traceback"] = traceback.format_exc()
|
150 |
-
raise HTTPException(status_code=500, detail=f"Unexpected error: {str(e)}")
|
151 |
|
|
|
152 |
@app.post("/predict")
|
153 |
-
def predict(
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
try:
|
159 |
-
# Input validation
|
160 |
-
if not request.text or not request.text.strip():
|
161 |
-
raise HTTPException(status_code=400, detail="Text cannot be empty")
|
162 |
-
|
163 |
-
text_to_process = request.text.strip()
|
164 |
-
logger.info(f"Processing text of length: {len(text_to_process)}")
|
165 |
-
|
166 |
-
# Vectorization with error handling
|
167 |
-
try:
|
168 |
-
vect = vectorizer.transform([text_to_process])
|
169 |
-
logger.info(f"Vectorization successful: shape={vect.shape}, nnz={vect.nnz}")
|
170 |
-
except Exception as e:
|
171 |
-
logger.error(f"Vectorization error: {str(e)}")
|
172 |
-
raise HTTPException(status_code=500, detail="Text vectorization failed")
|
173 |
-
|
174 |
-
# Prediction with error handling
|
175 |
-
try:
|
176 |
-
pred = model.predict(vect)
|
177 |
-
logger.info(f"Prediction successful: {pred}")
|
178 |
-
except Exception as e:
|
179 |
-
logger.error(f"Model prediction error: {str(e)}")
|
180 |
-
raise HTTPException(status_code=500, detail="Model prediction failed")
|
181 |
-
|
182 |
-
# Label transformation with error handling
|
183 |
-
try:
|
184 |
-
# Validate prediction is in expected range
|
185 |
-
if hasattr(label_encoder, 'classes_'):
|
186 |
-
max_class = len(label_encoder.classes_) - 1
|
187 |
-
if np.any(pred < 0) or np.any(pred > max_class):
|
188 |
-
logger.error(f"Prediction {pred} out of range [0, {max_class}]")
|
189 |
-
raise ValueError(f"Prediction out of range")
|
190 |
-
|
191 |
-
label = label_encoder.inverse_transform(pred)
|
192 |
-
logger.info(f"Label transformation successful: {label[0]}")
|
193 |
-
except Exception as e:
|
194 |
-
logger.error(f"Label transformation error: {str(e)}")
|
195 |
-
raise HTTPException(status_code=500, detail="Label transformation failed")
|
196 |
-
|
197 |
-
return {"prediction": label[0]}
|
198 |
-
|
199 |
-
except HTTPException:
|
200 |
-
raise
|
201 |
-
except Exception as e:
|
202 |
-
logger.error(f"Unexpected error in predict: {str(e)}")
|
203 |
-
logger.error(traceback.format_exc())
|
204 |
-
raise HTTPException(status_code=500, detail="Internal server error")
|
205 |
-
|
206 |
-
@app.post("/reload-models")
|
207 |
-
def reload_models():
|
208 |
-
global model, vectorizer, label_encoder, models_loaded
|
209 |
-
|
210 |
-
try:
|
211 |
-
model = load_model_safe("bangla_model.pkl")
|
212 |
-
vectorizer = load_model_safe("bangla_vectorizer.pkl")
|
213 |
-
label_encoder = load_model_safe("bangla_label_encoder.pkl")
|
214 |
-
models_loaded = True
|
215 |
-
return {"message": "Models reloaded successfully"}
|
216 |
-
except Exception as e:
|
217 |
-
models_loaded = False
|
218 |
-
raise HTTPException(status_code=500, detail=f"Failed to reload models: {str(e)}")
|
|
|
1 |
+
from fastapi import FastAPI
|
|
|
2 |
import joblib
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
app = FastAPI()
|
5 |
|
6 |
+
# Load your model, vectorizer, label encoder
|
7 |
+
model = joblib.load("bangla_model.pkl")
|
8 |
+
vectorizer = joblib.load("bangla_vectorizer.pkl")
|
9 |
+
label_encoder = joblib.load("bangla_label_encoder.pkl")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
# Root route to avoid 404
|
12 |
@app.get("/")
|
13 |
def root():
|
14 |
+
return {"message": "Bangla model API is running!"}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
# Example predict endpoint
|
17 |
@app.post("/predict")
|
18 |
+
def predict(text: str):
|
19 |
+
vect = vectorizer.transform([text])
|
20 |
+
pred = model.predict(vect)
|
21 |
+
label = label_encoder.inverse_transform(pred)
|
22 |
+
return {"prediction": label[0]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|