Fix using only generated_text[0]
Browse files
app.py
CHANGED
@@ -7,7 +7,7 @@ from transformers import pipeline
|
|
7 |
from ultralytics import YOLO
|
8 |
from PIL import Image
|
9 |
|
10 |
-
def process(path, progress = gr.Progress()):
|
11 |
progress(0, desc="Starting")
|
12 |
LINE_MODEL_PATH = "Kansallisarkisto/multicentury-textline-detection"
|
13 |
OCR_MODEL_PATH = "microsoft/trocr-large-handwritten"
|
@@ -16,6 +16,7 @@ def process(path, progress = gr.Progress()):
|
|
16 |
# Load the model and processor
|
17 |
processor = TrOCRProcessor.from_pretrained(OCR_MODEL_PATH)
|
18 |
model = VisionEncoderDecoderModel.from_pretrained(OCR_MODEL_PATH)
|
|
|
19 |
|
20 |
# Open an image of handwritten text
|
21 |
image = Image.open(path).convert("RGB")
|
@@ -44,9 +45,12 @@ def process(path, progress = gr.Progress()):
|
|
44 |
|
45 |
#Predict and decode the entire batch
|
46 |
progress(0, desc="Recognizing..")
|
|
|
|
|
47 |
generated_ids = model.generate(torch.cat(batch))
|
48 |
progress(0, desc="Decoding (token -> str)")
|
49 |
-
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
|
|
50 |
print(generated_text)
|
51 |
full_text = " ".join(generated_text)
|
52 |
print(full_text)
|
|
|
7 |
from ultralytics import YOLO
|
8 |
from PIL import Image
|
9 |
|
10 |
+
def process(path, progress = gr.Progress(), device = 'cpu'):
|
11 |
progress(0, desc="Starting")
|
12 |
LINE_MODEL_PATH = "Kansallisarkisto/multicentury-textline-detection"
|
13 |
OCR_MODEL_PATH = "microsoft/trocr-large-handwritten"
|
|
|
16 |
# Load the model and processor
|
17 |
processor = TrOCRProcessor.from_pretrained(OCR_MODEL_PATH)
|
18 |
model = VisionEncoderDecoderModel.from_pretrained(OCR_MODEL_PATH)
|
19 |
+
model.to(device)
|
20 |
|
21 |
# Open an image of handwritten text
|
22 |
image = Image.open(path).convert("RGB")
|
|
|
45 |
|
46 |
#Predict and decode the entire batch
|
47 |
progress(0, desc="Recognizing..")
|
48 |
+
batch = torch.cat(batch).to(device)
|
49 |
+
print("batch.shape", batch.shape)
|
50 |
generated_ids = model.generate(torch.cat(batch))
|
51 |
progress(0, desc="Decoding (token -> str)")
|
52 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
53 |
+
|
54 |
print(generated_text)
|
55 |
full_text = " ".join(generated_text)
|
56 |
print(full_text)
|