import argparse from concurrent.futures import ProcessPoolExecutor import time import subprocess as sp from pathlib import Path import typing as tp import warnings from tempfile import NamedTemporaryFile import gradio as gr from audiocraft.data.audio import audio_write from audiocraft.models import MusicGen MODEL = None INTERRUPTING = False # We have to wrap subprocess call to clean a bit the log when using gr.make_waveform _old_call = sp.call def _call_nostderr(*args, **kwargs): # Avoid ffmpeg vomiting on the logs. kwargs['stderr'] = sp.DEVNULL kwargs['stdout'] = sp.DEVNULL _old_call(*args, **kwargs) sp.call = _call_nostderr # Preallocating the pool of processes. pool = ProcessPoolExecutor(4) pool.__enter__() def interrupt(): global INTERRUPTING INTERRUPTING = True class FileCleaner: def __init__(self, file_lifetime: float = 3600): self.file_lifetime = file_lifetime self.files = [] def add(self, path: tp.Union[str, Path]): self._cleanup() self.files.append((time.time(), Path(path))) def _cleanup(self): now = time.time() for time_added, path in list(self.files): if now - time_added > self.file_lifetime: if path.exists(): path.unlink() self.files.pop(0) else: break file_cleaner = FileCleaner() def make_waveform(*args, **kwargs): # Further remove some warnings. waveform_start = time.time() with warnings.catch_warnings(): warnings.simplefilter('ignore') out = gr.make_waveform(*args, **kwargs) print("Make a video took", time.time() - waveform_start) return out def load_model(version='facebook/musicgen-medium'): global MODEL print("Loading model", version) if MODEL is None or MODEL.name != version: MODEL = MusicGen.get_pretrained(version) def _do_predictions(texts, duration, progress=False, **gen_kwargs): MODEL.set_generation_params(duration=duration, **gen_kwargs) generate_start = time.time() outputs = MODEL.generate(texts, progress=progress) outputs = outputs.detach().cpu().float() pending_videos = [] out_wavs = [] for output in outputs: with NamedTemporaryFile("wb", suffix=".wav", delete=False) as file: audio_write( file.name, output, MODEL.sample_rate, strategy="loudness", loudness_headroom_db=16, loudness_compressor=True, add_suffix=False) pending_videos.append(pool.submit(make_waveform, file.name)) out_wavs.append(file.name) file_cleaner.add(file.name) out_videos = [pending_video.result() for pending_video in pending_videos] for video in out_videos: file_cleaner.add(video) print("generation took", time.time() - generate_start) print("Tempfiles currently stored: ", len(file_cleaner.files)) return out_videos, out_wavs def predict_full(model, text, duration, bpm, topk, topp, temperature, cfg_coef, progress=gr.Progress()): text = "lofi " + text + " bpm: " + str(bpm) global INTERRUPTING INTERRUPTING = False if temperature < 0: raise gr.Error("Temperature must be >= 0.") if topk < 0: raise gr.Error("Topk must be non-negative.") if topp < 0: raise gr.Error("Topp must be non-negative.") topk = int(topk) load_model(model) def _progress(generated, to_generate): progress((min(generated, to_generate), to_generate)) if INTERRUPTING: raise gr.Error("Interrupted.") MODEL.set_custom_progress_callback(_progress) videos, wavs = _do_predictions( [text], duration, progress=True, top_k=topk, top_p=topp, temperature=temperature, cfg_coef=cfg_coef) return videos[0], wavs[0], None, None def ui(launch_kwargs): with gr.Blocks() as interface: gr.Markdown( """ # Lofi University Generate lofi tracks to help study. """ ) with gr.Row(): with gr.Column(): with gr.Row(): text = gr.Text(label="Describe your lofi", interactive=True) with gr.Row(): submit = gr.Button("Submit") _ = gr.Button("Interrupt").click(fn=interrupt, queue=False) with gr.Row(): model = gr.Radio(["facebook/musicgen-medium", "facebook/musicgen-small", "facebook/musicgen-large"], label="Model", value="facebook/musicgen-medium", interactive=True) with gr.Row(): bpm = gr.Slider(minimum=50, maximum=150, value=80, label="BPM", interactive=True) with gr.Row(): duration = gr.Slider(minimum=1, maximum=120, value=10, label="Duration", interactive=True) with gr.Row(): topk = gr.Number(label="Top-k", value=250, interactive=True) topp = gr.Number(label="Top-p", value=0, interactive=True) temperature = gr.Number(label="Temperature", value=1.0, interactive=True) cfg_coef = gr.Number(label="Classifier Free Guidance", value=3.0, interactive=True) with gr.Column(): output = gr.Video(label="Generated Music") audio_output = gr.Audio(label="Generated Music (wav)", type='filepath') submit.click(predict_full, inputs=[model, text, duration, bpm, topk, topp, temperature, cfg_coef], outputs=[output, audio_output]) gr.Examples( fn=predict_full, examples=[ [ "Dreamy synth layers with light beats", "facebook/musicgen-medium", ], [ "Mellow piano chords are accompanied by a subtle, relaxed drum loop", "facebook/musicgen-medium", ], ], inputs=[text, model], outputs=[output] ) interface.queue().launch(**launch_kwargs) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( '--server_port', type=int, default=0, help='Port to run the server listener on', ) parser.add_argument( '--inbrowser', action='store_true', help='Open in browser' ) parser.add_argument( '--share', action='store_true', help='Share the gradio UI' ) args = parser.parse_args() launch_kwargs = {} if args.server_port: launch_kwargs['server_port'] = args.server_port if args.inbrowser: launch_kwargs['inbrowser'] = args.inbrowser if args.share: launch_kwargs['share'] = args.share ui(launch_kwargs)