File size: 26,448 Bytes
eb5a9f7
5ce8e7b
 
7528883
eb5a9f7
 
 
 
 
 
 
 
cacad38
f792c47
45e2fad
 
 
 
cacad38
7528883
f505ec7
 
f792c47
f505ec7
 
 
 
cacad38
67de2cb
eb5a9f7
 
 
 
7528883
eb5a9f7
7528883
eb5a9f7
 
7528883
eb5a9f7
 
f792c47
eb5a9f7
7528883
 
 
 
 
45e2fad
7528883
 
45e2fad
7528883
45e2fad
7528883
 
 
 
 
 
 
e650fed
7528883
eb5a9f7
f505ec7
f792c47
 
 
 
 
 
 
 
 
eb5a9f7
 
 
7528883
 
 
 
 
eb5a9f7
 
 
7528883
 
 
 
 
 
eb5a9f7
 
 
7528883
f792c47
 
7528883
 
eb5a9f7
 
 
7528883
f792c47
7528883
 
f792c47
 
7528883
 
 
 
 
 
 
eb5a9f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f792c47
eb5a9f7
 
7528883
f792c47
7528883
eb5a9f7
7528883
6d4f005
7528883
f792c47
7528883
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f792c47
 
45e2fad
7528883
6d4f005
eb5a9f7
 
 
 
 
f505ec7
eb5a9f7
67de2cb
 
 
 
 
 
 
 
 
 
 
eb5a9f7
 
f505ec7
eb5a9f7
 
 
f505ec7
eb5a9f7
 
 
 
f505ec7
eb5a9f7
 
 
 
 
7528883
eb5a9f7
 
7528883
 
eb5a9f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7528883
f7b170c
 
 
 
 
 
 
b9b4791
 
f7b170c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb5a9f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67de2cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb5a9f7
 
 
f505ec7
 
7528883
 
 
 
 
eb5a9f7
 
 
7528883
 
eb5a9f7
 
7528883
 
 
 
45e2fad
 
 
 
 
 
 
 
6d4f005
45e2fad
7528883
 
 
 
 
 
 
 
 
 
 
eb5a9f7
7528883
eb5a9f7
 
 
 
7528883
eb5a9f7
7528883
eb5a9f7
 
 
 
 
45e2fad
6d4f005
45e2fad
eb5a9f7
 
 
7528883
eb5a9f7
6d4f005
eb5a9f7
 
 
 
 
 
 
 
6d4f005
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb5a9f7
 
6d4f005
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb5a9f7
7528883
eb5a9f7
 
 
 
 
 
 
 
 
 
 
 
 
 
7528883
eb5a9f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7528883
eb5a9f7
 
 
 
 
 
 
 
 
 
 
 
 
67de2cb
af57731
45e2fad
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
import dash
import dash_bootstrap_components as dbc
import pandas as pd
from dash import dcc, html, callback_context
from dash.dash_table import DataTable
from dash.dependencies import Output, Input, State
import plotly.express as px
import spacy
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
from gliner_spacy.pipeline import GlinerSpacy
import warnings
import os
import gc
import logging

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Suppress specific warnings
warnings.filterwarnings("ignore", message="The sentencepiece tokenizer")

# Initialize Dash app
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.DARKLY, 'https://use.fontawesome.com/releases/v5.8.1/css/all.css'])
server = app.server

# Reference absolute file path 
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
CATEGORIES_FILE = os.path.join(BASE_DIR, 'google_categories.txt')

# Configuration for GLiNER integration
custom_spacy_config = {
    "gliner_model": "urchade/gliner_small-v2.1",
    "chunk_size": 128,
    "labels": ["person", "organization", "location", "event", "work_of_art", "product", "service", "date", "number", "price", "address", "phone_number", "misc"],
    "threshold": 0.5
}

# Model variables for lazy loading
nlp = None
sentence_model = None
google_categories = []

# Function to lazy load NLP model
def get_nlp():
    global nlp
    if nlp is None:
        try:
            logger.info("Loading spaCy model")
            nlp = spacy.blank("en")
            nlp.add_pipe("gliner_spacy", config=custom_spacy_config)
            logger.info("spaCy model loaded successfully")
        except Exception as e:
            logger.exception("Error loading spaCy model")
            raise
    return nlp

# Function to lazy load sentence transformer model
def get_sentence_model():
    global sentence_model
    if sentence_model is None:
        sentence_model = SentenceTransformer('all-MiniLM-L6-v2')
    return sentence_model

# Load Google's content categories
def load_google_categories():
    global google_categories
    if not google_categories:
        try:
            with open(CATEGORIES_FILE, 'r') as f:
                google_categories = [line.strip() for line in f]
        except Exception as e:
            google_categories = []
    return google_categories

# Function to perform NER using GLiNER with spaCy
def perform_ner(text):
    try:
        doc = get_nlp()(text)
        return [(ent.text, ent.label_) for ent in doc.ents]
    except Exception as e:
        return []

# Function to extract entities using GLiNER with spaCy
def extract_entities(text):
    try:
        doc = get_nlp()(text)
        entities = [(ent.text, ent.label_) for ent in doc.ents]
        return entities if entities else ["No specific entities found"]
    except Exception as e:
        return ["Error extracting entities"]

# Function to precompute category embeddings
def compute_category_embeddings():
    try:
        categories = load_google_categories()
        return get_sentence_model().encode(categories)
    except Exception as e:
        return []

# Function to perform topic modeling using sentence transformers
def perform_topic_modeling_from_similarities(similarities):
    try:
        categories = load_google_categories()
        top_indices = similarities.argsort()[-3:][::-1]
        
        best_match = categories[top_indices[0]]
        second_best = categories[top_indices[1]]
        
        if similarities[top_indices[0]] > similarities[top_indices[1]] * 1.1:
            return best_match
        else:
            return f"{best_match} , {second_best}"
    except Exception as e:
        return "Error in topic modeling"

# Function to sort keywords by intent feature
def sort_by_keyword_feature(f):
    if type(f) != str:
        return "other"
    f = f.lower()

    informational_keywords = [
        "advice", "help", "how do i", "how does", "how to", "ideas", "information", "tools", "list", 
        "resources", "tips", "tutorial", "diy", "ways to", "what does", "what is", "what was", "where are", "where does", 
        "where can", "where is", "where was", "when is", "when are", "when was", "where to", "who is", "who said", "who wrote", 
        "who are", "why are", "who was", "why is", "examples", "explained", "meaning of", "definition", "benefits of", "uses of", 
        "overview", "summary", "report", "study",  "analysis", "research", "insight", "data", "facts", "details", "background", 
        "context", "news", "history", "documentation", "article", "paper", "blog", "forum", "discussion", "commentary", 
        "opinion", "perspective", "viewpoint", "guide", "difference between", "types of"
    ]

    navigational_keywords = [
        "facebook", "meta", "twitter", "site", "login", "account", "official website", "homepage", "portal", 
        "signin", "register", "signup", "dashboard", "profile", "settings", "control panel", "main page", 
        "user area", "admin", "control", "access", "entry", "webpage", "navigate", "home", "site map", 
        "directory", "find", "search", "lookup", "index", "online", "internet", "web", "browser", "navigate to", 
        "goto", "landing page", "url", "hyperlink", "link", "web address", "navigate", 
        "web navigation", "website address", "app", "download", "status", "join"
    ]

    local_keywords = [
        "closest", "close", "near me", "my area", "residential", "my zip", "my city", "nearby", "in town", 
        "around here", "local", "near", "vicinity", "local area", "nearest", "surrounding", "within miles", 
        "in my neighborhood", "district", "zone", "region", "near my location", "local services", "community", 
        "local shop", "in my vicinity", "local store", "suburb", "urban area", "within walking distance", 
        "around my place", "within my reach", "close by", "local office", "local branch", "near me now", 
        "in my locale", "within the city", "local market", "in my town", "local spot", "local point", 
        "local guide", "near my house", "local venue", "close to me", "within blocks", "local attractions", 
        "local events", "address"
    ]

    commercial_keywords = [
        "best", "affordable", "budget", "cheap", "expensive", "review", "top", "service", "cost", "average cost", 
        "calculator", "provider", "company", "vs", "companies", "professional", "specialist", "compare", 
        "comparison", "rating", "testimonials", "recommendation", "advisor", "consultant", "expert", "ranking", 
        "leader", "top-rated", "best-selling", "trending", "featured", "highlighted", "recommended", "popular", 
        "favorite", "preferred", "choice", "most reviewed", "highest rated", "highly recommended", "award-winning", 
        "five-star", "customer favorite", "top pick", "critically acclaimed", "editor's choice", "people's choice", 
        "top performer", "best value", "best overall", "best quality", "best price", "most trusted", "leading brand", 
        "popular choice", "most popular", "fees", "pros and cons"
    ]

    transactional_keywords = [
        "price", "quotes", "pricing", "purchase", "rates", "how much", "same day", "same-day", "buy", "order", 
        "discount", "deal", "offers", "sale", "checkout", "book", "reservation", "reserve", "bargain", "coupon", 
        "promo", "rebate", "clearance", "markdown", "buy one get one", "bogo", "special", "exclusive", "bundle", 
        "package", "subscription", "membership", "payment", "installment", "financing", "contract", "billing", 
        "invoice", "ticket", "admission", "entry", "enrollment", "register", "sign up", "pre-order", "e-commerce", 
        "shopping cart"
    ]

    if any(keyword in f for keyword in informational_keywords):
        return "informational"
    if any(keyword in f for keyword in navigational_keywords):
        return "navigational"
    if any(keyword in f for keyword in local_keywords):
        return "local"
    if any(keyword in f for keyword in commercial_keywords):
        return "commercial investigation"
    if any(keyword in f for keyword in transactional_keywords):
        return "transactional"

    return "other"

# Optimized batch processing of keywords
def batch_process_keywords(keywords, batch_size=8):
    processed_data = {'Keywords': [], 'Intent': [], 'NER Entities': [], 'Google Content Topics': []}
    
    try:
        sentence_model = get_sentence_model()
        category_embeddings = compute_category_embeddings()
        
        for i in range(0, len(keywords), batch_size):
            logger.info(f"Processing batch {i//batch_size + 1} of {len(keywords)//batch_size + 1}")
            batch = keywords[i:i+batch_size]
            batch_embeddings = sentence_model.encode(batch, batch_size=batch_size, show_progress_bar=False)
            
            intents = [sort_by_keyword_feature(kw) for kw in batch]
            entities = [extract_entities(kw) for kw in batch]
            
            similarities = cosine_similarity(batch_embeddings, category_embeddings)
            Google_Content_Topics = [perform_topic_modeling_from_similarities(sim) for sim in similarities]
            
            processed_data['Keywords'].extend(batch)
            processed_data['Intent'].extend(intents)
            
            processed_entities = []
            for entity_list in entities:
                entity_strings = []
                for entity in entity_list:
                    if isinstance(entity, tuple):
                        entity_strings.append(f"{entity[0]} ({entity[1]})")
                    else:
                        entity_strings.append(str(entity))
                processed_entities.append(", ".join(entity_strings))
            
            processed_data['NER Entities'].extend(processed_entities)
            processed_data['Google Content Topics'].extend(Google_Content_Topics)
            
            gc.collect()
        logger.info("Keyword processing completed successfully")
    except Exception as e:
        logger.exception(f"An error occurred in batch_process_keywords: {str(e)}")
    
    return processed_data

# Main layout of the dashboard
app.layout = dbc.Container([
    dcc.Store(id='models-loaded', data=False),
    dbc.NavbarSimple(
    children=[
        dbc.NavItem(dbc.NavLink("About", href="#about", external_link=True)),
        dbc.NavItem(dbc.NavLink("Contact", href="#contact", external_link=True)),
    ],
    brand="KeyIntentNER-T",
    brand_href="https://github.com/jeredhiggins/KeyIntentNER-T",
    color="#151515",
    dark=True,
    brand_style={"background": "linear-gradient(to right, #ff7e5f, #feb47b)", "-webkit-background-clip": "text", "color": "transparent", "textShadow": "0 0 1px #ffffff, 0 0 3px #ff7e5f, 0 0 5px #ff7e5f"},
),

    dbc.Row(dbc.Col(html.H1('Keyword Intent, Named Entity Recognition (NER), & Google Topic Modeling Dashboard', className='text-center text-light mb-4 mt-4'))),

    dbc.Row([
        dbc.Col([
            dbc.Label('Enter keywords (one per line, maximum of 100):', className='text-light'),
            dcc.Textarea(id='keyword-input', value='', style={'width': '100%', 'height': 100}),
            dbc.Button('Submit', id='submit-button', color='primary', className='mb-3', disabled=True),
            dbc.Alert(id='alert', is_open=False, duration=4000, color='danger', className='my-2'),
            dbc.Alert(id='processing-alert', is_open=False, color='info', className='my-2'),
        ], width=6)
    ], justify='center'),
    
    dbc.Row([
        dbc.Col([
            dcc.Loading(
                id="loading",
                type="default",
                children=[html.Div(id="loading-output", className="my-4")]
            ),
        ], width=12)
    ], justify='center', className="mb-4"),

    dbc.Row(dbc.Col(dcc.Graph(id='bar-chart'), width=12)),

    dbc.Row([
        dbc.Col([
            dbc.Label('View all keyword data for each intent category:', className='text-light mt-4'),
            dcc.Dropdown(
                id='table-intent-dropdown',
                options=[],
                placeholder='Select an Intent',
                className='text-dark'
            ),
        ], width=6)
    ], justify='center'),

    dbc.Row(dbc.Col(
        html.Div(id='keywords-table', style={'width': '100%'}),
        width=12
    )),

    dbc.Row(dbc.Col(
        dbc.Button('Download CSV For All Keywords', id='download-button', color='success', className='my-5', disabled=True),
        width=12
    ), justify='center'),

    dcc.Download(id='download'),
    dcc.Store(id='processed-data'),

# Explanation content
dbc.Row([
    dbc.Col([
        html.Div([
            dbc.Card([
                dbc.CardBody([
                    html.H3([html.I(className="fas fa-info-circle mr-2"), "About KeyIntentNER-T"], className="card-title text-warning"),
                    html.P("This tool provides valuable keyword insights for SEO and digital marketing professionals. Enter a list of keywords and get insights into Keyword Intent, NLP Entities extracted via NER (Named Entity Recognition), & Topics. I created KeyIntentNER-T as an example of how to use more modern NLP methods to gain insights into shorter text strings (keywords) and how this information may be understood by search engines using similar techniques.", className="card-text"), 
                ])
            ], className="mb-4 shadow-sm"),
            # New Usage Instructions Section
            dbc.Card([
                dbc.CardBody([
                    html.H3([html.I(className="fas fa-user-cog mr-2"), "Usage Instructions"], className="card-title text-primary"),
                    dbc.ListGroup([
                        dbc.ListGroupItem([html.I(className="fas fa-1 mr-2"), "Enter your keywords: Paste your list of keywords into the text area, one per line."]),
                        dbc.ListGroupItem([html.I(className="fas fa-2 mr-2"), "Click 'Process Keywords': This will start the analysis."]),
                        dbc.ListGroupItem([html.I(className="fas fa-3 mr-2"), "Wait for processing: This can take 30 seconds to 2 minutes depending on the number of keywords."]),
                        dbc.ListGroupItem([html.I(className="fas fa-4 mr-2"), "View results: The tool will display Keyword Intent, NLP Entities, and Topics for each keyword."]),
                        dbc.ListGroupItem([html.I(className="fas fa-5 mr-2"), "Export data: Use the 'Export to CSV' button to download your results."]),
                    ], flush=True),
                    html.P([
                        "For detailed instructions and more information, please refer to the ",
                        html.A("README file", href="https://github.com/jeredhiggins/KeyIntentNER-T/blob/main/README.md", target="_blank"),
                        "."
                    ], className="mt-3")
                ])
            ], className="mb-4 shadow-sm"),
            
            dbc.Row([
                dbc.Col([
                    dbc.Card([
                        dbc.CardBody([
                            html.H3([html.I(className="fas fa-pen mr-2"), "Notes on the data"], className="card-title text-success"),
                            dbc.ListGroup([
                                dbc.ListGroupItem([html.I(className="fas fa-check mr-2"), "Keyword Intent is determined using a custom function that looks for the presence of specific terms and then classifies it into one of six predefined intent categories: 'informational', 'navigational', 'local', 'commercial investigation', 'transactional', or 'other'."]),
                                dbc.ListGroupItem([html.I(className="fas fa-check mr-2"), "NLP Entities are determined using GLiNER, an advanced Named Entity Recognition (NER) model that is better at classifying shorter text strings. Additionally, Entitites are mapped to all Entity Types included in the Google Cloud Natural Language API."]),
                                dbc.ListGroupItem([html.I(className="fas fa-check mr-2"), "Topics are determined by matching keywords to topics from Google's well-known Content and Product taxonomies."]),
                                dbc.ListGroupItem([html.I(className="fas fa-check mr-2"), "Since this tool is doing a lot behind the scenes, keyword processing can take anywhere from 30 seconds up to ~2 minutes."]),
                            ], flush=True)
                        ])
                    ], className="mb-4 shadow-sm")
                ], md=6),
                dbc.Col([
                    dbc.Card([
                        dbc.CardBody([
                            html.H3([html.I(className="fas fa-chart-line mr-2"), "Benefits for SEO"], className="card-title text-info"),
                            dbc.ListGroup([
                                dbc.ListGroupItem([html.I(className="fas fa-arrow-up mr-2"), "Improved content strategy by focusing your SEO efforts on creating more relevant/helpful content that addresses the search intent for keywords."]),
                                dbc.ListGroupItem([html.I(className="fas fa-bullseye mr-2"), "Enhanced keyword targeting by matching keywords to Google's well-known categories, ensuring your content is aligned with popular search themes."]),
                                dbc.ListGroupItem([html.I(className="fas fa-users mr-2"), "Better understanding of what kind of information a person is looking for."]),
                                dbc.ListGroupItem([html.I(className="fas fa-robot mr-2"), "Better understanding of how keywords can be interpreted by search engines."]),
                            ], flush=True)
                        ])
                    ], className="mb-4 shadow-sm")
                ], md=6),
            ]),
            dbc.Card([
                dbc.CardBody([
                    html.H3([html.I(className="fas fa-quote-left mr-2"), "GLiNER Model Citation"], className="card-title text-light"),
                    html.P([
                        "GLiNER: Generalist Model for Named Entity Recognition using Bidirectional Transformer. ",
                        html.Br(),
                        "Authors: Urchade Zaratiana, Nadi Tomeh, Pierre Holat, Thierry Charnois.",
                        html.Br(),
                        "Year: 2023.",
                        html.Br(),
                        html.A([html.I(className="fas fa-external-link-alt mr-2"), "arXiv:2311.08526"], href="https://arxiv.org/abs/2311.08526", target="_blank", className="btn btn-outline-warning btn-sm mt-2")
                    ], className="card-text"),
                ])
            ], className="mb-4 shadow-sm")
        ], id="about")
    ], width=12)
], className="mt-5"),

    # Contact section
    dbc.Row([
        dbc.Col([
            html.Div([
                dbc.Card([
                    dbc.CardBody([
                        html.H3([html.I(className="fas fa-envelope mr-2"), "Contact"], className="card-title text-info"),
                        html.P([
                            "For questions or if you are interested in building custom SEO dash apps, contact me at: ",
                            html.A("[email protected]", href="mailto:[email protected]", className="text-info")
                        ], className="card-text"),
                    ])
                ], className="mb-4 shadow-sm")
            ], id="contact")
        ], width=12)
    ], className="mt-4 mb-4"),

# JS for smooth scrolling
    html.Div([
        html.Script('''
            document.addEventListener("DOMContentLoaded", function() {
                var links = document.querySelectorAll("a[href^='#']");
                links.forEach(function(link) {
                    link.addEventListener("click", function(e) {
                        e.preventDefault();
                        var targetId = this.getAttribute("href").substring(1);
                        var targetElement = document.getElementById(targetId);
                        if (targetElement) {
                            targetElement.scrollIntoView({
                                behavior: "smooth",
                                block: "start"
                            });
                        }
                    });
                });
            });
        ''')
    ]),

], fluid=True)

@app.callback(
    [Output('models-loaded', 'data'),
     Output('submit-button', 'disabled'),
     Output('alert', 'is_open'),
     Output('alert', 'children'),
     Output('alert', 'color'),
     Output('processed-data', 'data'),
     Output('loading-output', 'children'),
     Output('processing-alert', 'is_open'),
     Output('processing-alert', 'children')],
    [Input('models-loaded', 'data'),
     Input('submit-button', 'n_clicks')],
    [State('keyword-input', 'value')]
)
def combined_callback(loaded, n_clicks, keyword_input):
    ctx = callback_context
    triggered_id = ctx.triggered[0]['prop_id'].split('.')[0]

    try:
        if triggered_id == 'models-loaded':
            return handle_model_loading(loaded)
        elif triggered_id == 'submit-button':
            return handle_keyword_processing(n_clicks, keyword_input)
        else:
            return loaded, False, False, "", "success", None, '', False, ''
    except Exception as e:
        logger.exception(f"An error occurred in combined_callback: {str(e)}")
        return loaded, False, True, f"An error occurred: {str(e)}", "danger", None, '', False, ''

def handle_model_loading(loaded):
    if not loaded:
        try:
            # Lazy loading will occur when models are first used
            return True, False, True, "Models ready to load", "success", None, '', False, ''
        except Exception as e:
            return False, True, True, f"Error preparing models: {str(e)}", "danger", None, '', False, ''
    return loaded, not loaded, False, "", "success", None, '', False, ''

def handle_keyword_processing(n_clicks, keyword_input):
    if n_clicks is None or not keyword_input:
        return True, False, False, "", "success", None, '', False, ''

    keywords = [kw.strip() for kw in keyword_input.split('\n')[:100] if kw.strip()]
    processed_data = batch_process_keywords(keywords)

    return True, False, False, "", "success", processed_data, '', True, "Keyword processing complete!"

# Callback for updating the bar chart
@app.callback(
    Output('bar-chart', 'figure'),
    [Input('processed-data', 'data')]
)
def update_bar_chart(processed_data):
    logger.info("Updating bar chart")
    if processed_data is None or not processed_data:
        logger.info("No processed data available")
        return {
            'data': [],
            'layout': {
                'height': 0,
                'annotations': [{
                    'text': 'No data available',
                    'xref': 'paper',
                    'yref': 'paper',
                    'showarrow': False,
                    'font': {'size': 28}
                }]
            }
        }

    try:
        df = pd.DataFrame(processed_data)
        logger.info(f"Data shape: {df.shape}")
        intent_counts = df['Intent'].value_counts().reset_index()
        intent_counts.columns = ['Intent', 'Count']

        fig = px.bar(intent_counts, x='Intent', y='Count', color='Intent', 
                     title='Keyword Intent Distribution', 
                     color_discrete_sequence=px.colors.qualitative.Dark2)
        
        fig.update_layout(
            plot_bgcolor='#222222',
            paper_bgcolor='#222222',
            font_color='white',
            height=400,
            legend=dict(
                orientation="h",
                yanchor="bottom",
                y=1.02,
                xanchor="right",
                x=1
            )
        )

        return fig
    except Exception as e:
        logger.exception(f"Error in update_bar_chart: {str(e)}")
        return {
            'data': [],
            'layout': {
                'height': 0,
                'annotations': [{
                    'text': f'Error: {str(e)}',
                    'xref': 'paper',
                    'yref': 'paper',
                    'showarrow': False,
                    'font': {'size': 28}
                }]
            }
        }

# Callback for updating the dropdown and download button
@app.callback(
    [Output('table-intent-dropdown', 'options'),
     Output('download-button', 'disabled')],
    [Input('processed-data', 'data')]
)
def update_dropdown_and_button(processed_data):
    if processed_data is None:
        return [], True

    df = pd.DataFrame(processed_data)
    intents = df['Intent'].unique()
    options = [{'label': intent, 'value': intent} for intent in intents]
    return options, False

# Callback for updating the keywords table
@app.callback(
    Output('keywords-table', 'children'),
    [Input('table-intent-dropdown', 'value')],
    [State('processed-data', 'data')]
)
def update_keywords_table(selected_intent, processed_data):
    if processed_data is None or selected_intent is None:
        return html.Div()

    df = pd.DataFrame(processed_data)
    filtered_df = df[df['Intent'] == selected_intent]

    table = DataTable(
        columns=[{"name": i, "id": i} for i in filtered_df.columns],
        data=filtered_df.to_dict('records'),
        style_table={'overflowX': 'auto'},
        style_cell={'textAlign': 'left', 'whiteSpace': 'normal', 'height': 'auto', 'minWidth': '100px', 'width': '100px', 'maxWidth': '100px'},
        style_header={'backgroundColor': 'rgb(30, 30, 30)', 'color': 'white'},
        style_data={'backgroundColor': 'rgb(50, 50, 50)', 'color': 'white'},
        sort_action='native',
        page_action='native',
        page_current=0
    )
    return table

# Callback for downloading CSV
@app.callback(
    Output('download', 'data'),
    [Input('download-button', 'n_clicks')],
    [State('processed-data', 'data')]
)
def download_csv(n_clicks, processed_data):
    if n_clicks is None or processed_data is None:
        return None

    df = pd.DataFrame(processed_data)
    csv_string = df.to_csv(index=False, encoding='utf-8')
    return dict(content=csv_string, filename="KeyIntentNER-T_keyword_analysis.csv")

# Modified the server run command for HuggingFace Spaces
if __name__ == "__main__":
    app.run_server(debug=False, host="0.0.0.0", port=7860)