Spaces:
Sleeping
Sleeping
Commit
·
8134ad6
1
Parent(s):
778b6ac
handle both ar and eng
Browse files- Dockerfile +21 -10
- app.py +209 -54
Dockerfile
CHANGED
@@ -1,17 +1,28 @@
|
|
1 |
-
|
|
|
2 |
|
|
|
3 |
WORKDIR /app
|
4 |
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
RUN pip install --no-cache-dir -r requirements.txt
|
7 |
|
8 |
-
#
|
9 |
-
|
10 |
-
ENV TRANSFORMERS_CACHE=/app/.cache
|
11 |
-
ENV HF_HUB_CACHE=/app/.cache
|
12 |
-
RUN mkdir -p /app/.cache && chmod -R 777 /app/.cache
|
13 |
|
14 |
-
|
|
|
15 |
|
16 |
-
|
17 |
-
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
|
|
1 |
+
# Use Python 3.9 as the base image
|
2 |
+
FROM python:3.9
|
3 |
|
4 |
+
# Set working directory in the container
|
5 |
WORKDIR /app
|
6 |
|
7 |
+
# Create a non-root user and set permissions
|
8 |
+
RUN useradd -m myuser && chown -R myuser:myuser /app
|
9 |
+
USER myuser
|
10 |
+
|
11 |
+
# Set Hugging Face cache directory
|
12 |
+
ENV HF_HOME=/app/.cache/huggingface
|
13 |
+
|
14 |
+
# Update PATH for uvicorn
|
15 |
+
ENV PATH="/home/myuser/.local/bin:${PATH}"
|
16 |
+
|
17 |
+
# Copy requirements.txt and install dependencies
|
18 |
+
COPY --chown=myuser:myuser requirements.txt .
|
19 |
RUN pip install --no-cache-dir -r requirements.txt
|
20 |
|
21 |
+
# Clear cache and pre-download models
|
22 |
+
RUN rm -rf /app/.cache/huggingface/* && python -c "from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM; pipeline('text-classification', model='Hello-SimpleAI/chatgpt-detector-roberta'); pipeline('text-classification', model='openai-community/roberta-large-openai-detector'); pipeline('text-classification', model='sabaridsnfuji/arabic-ai-text-detector'); AutoTokenizer.from_pretrained('gpt2'); AutoModelForCausalLM.from_pretrained('gpt2'); AutoTokenizer.from_pretrained('aubmindlab/araGPT2'); AutoModelForCausalLM.from_pretrained('aubmindlab/araGPT2')"
|
|
|
|
|
|
|
23 |
|
24 |
+
# Copy the application code
|
25 |
+
COPY --chown=myuser:myuser . .
|
26 |
|
27 |
+
# Run the FastAPI app with Uvicorn
|
28 |
+
CMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "7860"]
|
app.py
CHANGED
@@ -1,35 +1,82 @@
|
|
1 |
-
from fastapi import FastAPI
|
2 |
-
from pydantic import BaseModel
|
3 |
-
|
4 |
import torch
|
5 |
-
import
|
|
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
# 1. Classifier model (better than akshayvkt)
|
10 |
-
clf_model_name = "Hello-SimpleAI/chatgpt-detector-roberta"
|
11 |
-
clf_tokenizer = AutoTokenizer.from_pretrained(clf_model_name)
|
12 |
-
clf_model = AutoModelForSequenceClassification.from_pretrained(clf_model_name)
|
13 |
-
|
14 |
-
# 2. Perplexity model (GPT-2)
|
15 |
-
ppl_model_name = "gpt2"
|
16 |
-
ppl_tokenizer = AutoTokenizer.from_pretrained(ppl_model_name)
|
17 |
-
ppl_model = AutoModelForCausalLM.from_pretrained(ppl_model_name)
|
18 |
|
19 |
-
|
20 |
-
text: str
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
stride = 512
|
34 |
seq_len = encodings.input_ids.size(1)
|
35 |
|
@@ -38,12 +85,12 @@ def get_perplexity(text: str) -> float:
|
|
38 |
for begin_loc in range(0, seq_len, stride):
|
39 |
end_loc = min(begin_loc + stride, seq_len)
|
40 |
trg_len = end_loc - prev_end_loc
|
41 |
-
input_ids = encodings.input_ids[:, begin_loc:end_loc]
|
42 |
target_ids = input_ids.clone()
|
43 |
target_ids[:, :-trg_len] = -100
|
44 |
|
45 |
with torch.no_grad():
|
46 |
-
outputs =
|
47 |
neg_log_likelihood = outputs.loss * trg_len
|
48 |
|
49 |
nlls.append(neg_log_likelihood)
|
@@ -52,30 +99,138 @@ def get_perplexity(text: str) -> float:
|
|
52 |
if end_loc == seq_len:
|
53 |
break
|
54 |
|
55 |
-
ppl = torch.exp(torch.stack(nlls).sum() / end_loc)
|
56 |
-
return ppl
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
else:
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException
|
2 |
+
from pydantic import BaseModel, validator
|
3 |
+
import re
|
4 |
import torch
|
5 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForCausalLM, pipeline
|
6 |
+
from collections import Counter
|
7 |
+
import logging
|
8 |
+
import numpy as np
|
9 |
|
10 |
+
# Configure logging with more detail
|
11 |
+
logging.basicConfig(filename="predictions.log", level=logging.DEBUG, format="%(asctime)s - %(levelname)s - %(message)s")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
app = FastAPI(title="Improved AI Text Detector")
|
|
|
14 |
|
15 |
+
# Enable GPU if available, else use CPU
|
16 |
+
device = 0 if torch.cuda.is_available() else -1
|
17 |
+
torch.manual_seed(42)
|
18 |
+
|
19 |
+
# Load classifier models
|
20 |
+
english_detectors = [
|
21 |
+
pipeline("text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta", device=device, truncation=True, max_length=512),
|
22 |
+
pipeline("text-classification", model="openai-community/roberta-large-openai-detector", device=device, truncation=True, max_length=512)
|
23 |
+
]
|
24 |
+
arabic_detector = pipeline("text-classification", model="sabaridsnfuji/arabic-ai-text-detector", device=device, truncation=True, max_length=512)
|
25 |
+
|
26 |
+
# Load perplexity models
|
27 |
+
ppl_english = {
|
28 |
+
"tokenizer": AutoTokenizer.from_pretrained("gpt2"),
|
29 |
+
"model": AutoModelForCausalLM.from_pretrained("gpt2").to(device)
|
30 |
+
}
|
31 |
+
ppl_arabic = {
|
32 |
+
"tokenizer": AutoTokenizer.from_pretrained("aubmindlab/araGPT2"),
|
33 |
+
"model": AutoModelForCausalLM.from_pretrained("aubmindlab/araGPT2").to(device)
|
34 |
+
}
|
35 |
+
|
36 |
+
def detect_language(text: str) -> str:
|
37 |
+
"""Detect if text is Arabic or English based on Unicode character ranges."""
|
38 |
+
arabic_chars = len(re.findall(r'[\u0600-\u06FF]', text))
|
39 |
+
latin_chars = len(re.findall(r'[A-Za-z]', text))
|
40 |
+
total_chars = arabic_chars + latin_chars
|
41 |
+
if total_chars == 0:
|
42 |
+
return 'en'
|
43 |
+
arabic_ratio = arabic_chars / total_chars
|
44 |
+
return 'ar' if arabic_ratio > 0.5 else 'en'
|
45 |
+
|
46 |
+
def calculate_burstiness(text: str) -> float:
|
47 |
+
"""Calculate burstiness (std/mean of sentence lengths) to bias toward human text."""
|
48 |
+
sentences = re.split(r'[.!?]', text)
|
49 |
+
lengths = [len(s.split()) for s in sentences if s]
|
50 |
+
return np.std(lengths) / (np.mean(lengths) + 1e-6) if lengths else 0
|
51 |
+
|
52 |
+
def calculate_ttr(text: str) -> float:
|
53 |
+
"""Calculate type-token ratio (lexical diversity) to bias toward human text."""
|
54 |
+
words = text.split()
|
55 |
+
if not words:
|
56 |
+
return 0
|
57 |
+
unique_words = len(set(words))
|
58 |
+
total_words = len(words)
|
59 |
+
return unique_words / total_words
|
60 |
+
|
61 |
+
def clean_text(text: str, language: str) -> str:
|
62 |
+
"""Clean text by removing special characters and normalizing spaces. Skip lowercase for Arabic."""
|
63 |
+
text = re.sub(r'\s+', ' ', text)
|
64 |
+
text = re.sub(r'[^\w\s.,!?]', '', text)
|
65 |
+
text = text.strip()
|
66 |
+
if language == 'en':
|
67 |
+
text = text.lower()
|
68 |
+
return text
|
69 |
+
|
70 |
+
def get_classifier_score(text: str, detector) -> float:
|
71 |
+
"""Get classifier probability for AI label."""
|
72 |
+
result = detector(text, truncation=True, max_length=512)[0]
|
73 |
+
score = result['score']
|
74 |
+
return score if result['label'] in ['AI', 'Fake'] else 1 - score
|
75 |
+
|
76 |
+
def get_perplexity(text: str, tokenizer, model) -> float:
|
77 |
+
"""Calculate perplexity using a language model."""
|
78 |
+
encodings = tokenizer(text, return_tensors="pt", truncation=True, max_length=512).to(device)
|
79 |
+
max_length = model.config.n_positions
|
80 |
stride = 512
|
81 |
seq_len = encodings.input_ids.size(1)
|
82 |
|
|
|
85 |
for begin_loc in range(0, seq_len, stride):
|
86 |
end_loc = min(begin_loc + stride, seq_len)
|
87 |
trg_len = end_loc - prev_end_loc
|
88 |
+
input_ids = encodings.input_ids[:, begin_loc:end_loc].to(device)
|
89 |
target_ids = input_ids.clone()
|
90 |
target_ids[:, :-trg_len] = -100
|
91 |
|
92 |
with torch.no_grad():
|
93 |
+
outputs = model(input_ids, labels=target_ids)
|
94 |
neg_log_likelihood = outputs.loss * trg_len
|
95 |
|
96 |
nlls.append(neg_log_likelihood)
|
|
|
99 |
if end_loc == seq_len:
|
100 |
break
|
101 |
|
102 |
+
ppl = torch.exp(torch.stack(nlls).sum() / end_loc if nlls else torch.tensor(0)).item()
|
103 |
+
return ppl
|
104 |
+
|
105 |
+
def split_text(text: str, max_chars: int = 5000) -> list:
|
106 |
+
"""Split text into chunks of max_chars, preserving sentence boundaries."""
|
107 |
+
sentences = re.split(r'(?<=[.!?])\s+', text)
|
108 |
+
chunks = []
|
109 |
+
current_chunk = ""
|
110 |
+
for sentence in sentences:
|
111 |
+
if len(current_chunk) + len(sentence) <= max_chars:
|
112 |
+
current_chunk += sentence + " "
|
113 |
+
else:
|
114 |
+
if current_chunk:
|
115 |
+
chunks.append(current_chunk.strip())
|
116 |
+
current_chunk = sentence + " "
|
117 |
+
if current_chunk:
|
118 |
+
chunks.append(current_chunk.strip())
|
119 |
+
return chunks
|
120 |
+
|
121 |
+
class TextInput(BaseModel):
|
122 |
+
text: str
|
123 |
|
124 |
+
@validator("text")
|
125 |
+
def validate_text(cls, value):
|
126 |
+
"""Validate input text for minimum length and content."""
|
127 |
+
word_count = len(value.split())
|
128 |
+
if word_count < 50:
|
129 |
+
raise ValueError(f"Text too short ({word_count} words). Minimum 50 words required.")
|
130 |
+
if not re.search(r'[\w]', value):
|
131 |
+
raise ValueError("Text must contain alphabetic characters.")
|
132 |
+
return value
|
133 |
|
134 |
+
@app.post("/detect")
|
135 |
+
def detect(input_text: TextInput):
|
136 |
+
detected_lang = detect_language(input_text.text)
|
137 |
+
note_lang = f"Detected language: {'Arabic' if detected_lang == 'ar' else 'English'}"
|
138 |
+
cleaned_text = clean_text(input_text.text, detected_lang)
|
139 |
+
burstiness = calculate_burstiness(cleaned_text)
|
140 |
+
ttr = calculate_ttr(cleaned_text)
|
141 |
+
note_features = f"Burstiness: {burstiness:.2f} (high suggests human), TTR: {ttr:.2f} (low suggests human)"
|
142 |
+
|
143 |
+
# Select appropriate models
|
144 |
+
detectors = english_detectors if detected_lang == 'en' else [arabic_detector]
|
145 |
+
ppl_model = ppl_english if detected_lang == 'en' else ppl_arabic
|
146 |
+
is_ensemble = detected_lang == 'en'
|
147 |
+
|
148 |
+
if len(cleaned_text) > 10000:
|
149 |
+
chunks = split_text(cleaned_text, max_chars=5000)
|
150 |
+
labels = []
|
151 |
+
clf_scores = []
|
152 |
+
ppls = []
|
153 |
+
|
154 |
+
for chunk_idx, chunk in enumerate(chunks):
|
155 |
+
chunk_labels = []
|
156 |
+
chunk_clf_scores = []
|
157 |
+
for det_idx, detector in enumerate(detectors):
|
158 |
+
clf_score = get_classifier_score(chunk, detector)
|
159 |
+
label = "AI" if clf_score >= 0.99 else "Human" if clf_score < 0.60 else "Uncertain"
|
160 |
+
chunk_labels.append(label)
|
161 |
+
chunk_clf_scores.append(clf_score)
|
162 |
+
logging.debug(f"Chunk {chunk_idx}, Model {det_idx}: Label={label}, Classifier Score={clf_score:.4f}")
|
163 |
+
ppl = get_perplexity(chunk, ppl_model["tokenizer"], ppl_model["model"])
|
164 |
+
chunk_final_label = Counter(chunk_labels).most_common(1)[0][0]
|
165 |
+
avg_clf_score = np.mean(chunk_clf_scores)
|
166 |
+
|
167 |
+
# Combine classifier, perplexity, burstiness, and TTR
|
168 |
+
if chunk_final_label == "Uncertain" or len(set(chunk_labels)) == len(detectors) or any(l == "Human" for l in chunk_labels):
|
169 |
+
if ppl > 60 or burstiness > 1.2 or ttr < 0.12:
|
170 |
+
chunk_final_label = "Human"
|
171 |
+
elif chunk_final_label == "AI" and (ppl > 60 or burstiness > 1.2 or ttr < 0.12):
|
172 |
+
chunk_final_label = "Human"
|
173 |
+
labels.append(chunk_final_label)
|
174 |
+
clf_scores.append(avg_clf_score)
|
175 |
+
ppls.append(ppl)
|
176 |
+
logging.debug(f"Chunk {chunk_idx} Final: Label={chunk_final_label}, Avg Classifier Score={avg_clf_score:.4f}, Perplexity={ppl:.2f}, Burstiness={burstiness:.2f}, TTR={ttr:.2f}")
|
177 |
+
|
178 |
+
label_counts = Counter(labels)
|
179 |
+
final_label = label_counts.most_common(1)[0][0]
|
180 |
+
if final_label == "Uncertain" or len(set(labels)) == len(detectors) or any(l == "Human" for l in labels):
|
181 |
+
if any(ppl > 60 for ppl in ppls) or burstiness > 1.2 or ttr < 0.12:
|
182 |
+
final_label = "Human"
|
183 |
+
avg_clf_score = sum(clf_scores) / len(clf_scores) if clf_scores else 0.0
|
184 |
+
avg_ppl = sum(ppls) / len(ppls) if ppls else 0.0
|
185 |
+
logging.info(f"Language: {detected_lang} | Text Length: {len(cleaned_text)} | Chunks: {len(chunks)} | Prediction: {final_label} | Avg Classifier Score: {avg_clf_score:.4f} | Avg Perplexity: {avg_ppl:.2f} | {note_features}")
|
186 |
+
return {
|
187 |
+
"prediction": final_label,
|
188 |
+
"classifier_score": round(avg_clf_score, 4),
|
189 |
+
"perplexity": round(avg_ppl, 2),
|
190 |
+
"note": f"{note_lang}. Text was split into {len(chunks)} chunks due to length > 10,000 characters. {note_features}.",
|
191 |
+
"chunk_results": [
|
192 |
+
{"chunk": chunk[:50] + "...", "label": labels[i], "classifier_score": clf_scores[i], "perplexity": ppls[i], "burstiness": burstiness, "ttr": ttr}
|
193 |
+
for i, chunk in enumerate(chunks)
|
194 |
+
]
|
195 |
+
}
|
196 |
else:
|
197 |
+
if is_ensemble:
|
198 |
+
clf_scores = []
|
199 |
+
labels = []
|
200 |
+
for det_idx, detector in enumerate(detectors):
|
201 |
+
clf_score = get_classifier_score(cleaned_text, detector)
|
202 |
+
label = "AI" if clf_score >= 0.99 else "Human" if clf_score < 0.60 else "Uncertain"
|
203 |
+
labels.append(label)
|
204 |
+
clf_scores.append(clf_score)
|
205 |
+
logging.debug(f"Model {det_idx}: Label={label}, Classifier Score={clf_score:.4f}")
|
206 |
+
ppl = get_perplexity(cleaned_text, ppl_model["tokenizer"], ppl_model["model"])
|
207 |
+
label_counts = Counter(labels)
|
208 |
+
final_label = label_counts.most_common(1)[0][0]
|
209 |
+
if final_label == "Uncertain" or len(set(labels)) == len(detectors) or any(l == "Human" for l in labels):
|
210 |
+
if ppl > 60 or burstiness > 1.2 or ttr < 0.12:
|
211 |
+
final_label = "Human"
|
212 |
+
elif final_label == "AI" and (ppl > 60 or burstiness > 1.2 or ttr < 0.12):
|
213 |
+
final_label = "Human"
|
214 |
+
avg_clf_score = sum(clf_scores) / len(clf_scores) if clf_scores else 0.0
|
215 |
+
note = f"{note_lang}. Ensemble used: {len(detectors)} models. {note_features}. Perplexity: {ppl:.2f}."
|
216 |
+
if 0.60 <= avg_clf_score < 0.99:
|
217 |
+
note += " Warning: Close to threshold, result may be uncertain."
|
218 |
+
logging.info(f"Language: {detected_lang} | Text Length: {len(cleaned_text)} | Prediction: {final_label} | Avg Classifier Score: {avg_clf_score:.4f} | Perplexity: {ppl:.2f} | Model Scores: {clf_scores} | {note_features}")
|
219 |
+
else:
|
220 |
+
clf_score = get_classifier_score(cleaned_text, arabic_detector)
|
221 |
+
ppl = get_perplexity(cleaned_text, ppl_model["tokenizer"], ppl_model["model"])
|
222 |
+
final_label = "AI" if clf_score >= 0.97 else "Human" if clf_score < 0.60 else "Uncertain"
|
223 |
+
if final_label == "Uncertain" or final_label == "Human":
|
224 |
+
if ppl > 60 or burstiness > 0.8 or ttr < 0.12:
|
225 |
+
final_label = "Human"
|
226 |
+
avg_clf_score = clf_score
|
227 |
+
note = f"{note_lang}. {note_features}. Perplexity: {ppl:.2f}."
|
228 |
+
if 0.60 <= clf_score < 0.97:
|
229 |
+
note += " Warning: Close to threshold, result may be uncertain."
|
230 |
+
logging.info(f"Language: {detected_lang} | Text Length: {len(cleaned_text)} | Prediction: {final_label} | Classifier Score: {avg_clf_score:.4f} | Perplexity: {ppl:.2f} | {note_features}")
|
231 |
+
return {
|
232 |
+
"prediction": final_label,
|
233 |
+
"classifier_score": round(avg_clf_score, 4),
|
234 |
+
"perplexity": round(ppl, 2),
|
235 |
+
"note": note
|
236 |
+
}
|