Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
import numpy as np
|
4 |
+
from keras.utils import normalize
|
5 |
+
|
6 |
+
def dice_coef(y_true, y_pred):
|
7 |
+
smooth = 1e-5
|
8 |
+
intersection = K.sum(y_true * y_pred, axis=[1, 2, 3])
|
9 |
+
union = K.sum(y_true, axis=[1, 2, 3]) + K.sum(y_pred, axis=[1, 2, 3])
|
10 |
+
return K.mean((2.0 * intersection + smooth) / (union + smooth), axis=0)
|
11 |
+
|
12 |
+
def predict_segmentation(image):
|
13 |
+
SIZE_X = 128
|
14 |
+
SIZE_Y = 128
|
15 |
+
|
16 |
+
img = cv2.resize(image, (SIZE_Y, SIZE_X))
|
17 |
+
img = np.expand_dims(img, axis=2)
|
18 |
+
img = normalize(img, axis=1)
|
19 |
+
|
20 |
+
# Prepare image for prediction
|
21 |
+
img = np.expand_dims(img, axis=0)
|
22 |
+
|
23 |
+
# Predict
|
24 |
+
prediction = model.predict(img)
|
25 |
+
predicted_img = np.argmax(prediction, axis=3)[0, :, :]
|
26 |
+
|
27 |
+
return predicted_img
|
28 |
+
|
29 |
+
# Load the model
|
30 |
+
model = tf.keras.models.load_model("path_to_your_model_directory", custom_objects={'dice_coef': dice_coef})
|
31 |
+
|
32 |
+
# Gradio Interface
|
33 |
+
iface = gr.Interface(
|
34 |
+
fn=predict_segmentation,
|
35 |
+
inputs="image",
|
36 |
+
outputs="image",
|
37 |
+
live=False
|
38 |
+
)
|
39 |
+
|
40 |
+
iface.launch()
|