itzjunayed commited on
Commit
fa811d4
·
verified ·
1 Parent(s): ef535ad

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -0
app.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import tensorflow as tf
3
+ import numpy as np
4
+ from keras.utils import normalize
5
+
6
+ def dice_coef(y_true, y_pred):
7
+ smooth = 1e-5
8
+ intersection = K.sum(y_true * y_pred, axis=[1, 2, 3])
9
+ union = K.sum(y_true, axis=[1, 2, 3]) + K.sum(y_pred, axis=[1, 2, 3])
10
+ return K.mean((2.0 * intersection + smooth) / (union + smooth), axis=0)
11
+
12
+ def predict_segmentation(image):
13
+ SIZE_X = 128
14
+ SIZE_Y = 128
15
+
16
+ img = cv2.resize(image, (SIZE_Y, SIZE_X))
17
+ img = np.expand_dims(img, axis=2)
18
+ img = normalize(img, axis=1)
19
+
20
+ # Prepare image for prediction
21
+ img = np.expand_dims(img, axis=0)
22
+
23
+ # Predict
24
+ prediction = model.predict(img)
25
+ predicted_img = np.argmax(prediction, axis=3)[0, :, :]
26
+
27
+ return predicted_img
28
+
29
+ # Load the model
30
+ model = tf.keras.models.load_model("path_to_your_model_directory", custom_objects={'dice_coef': dice_coef})
31
+
32
+ # Gradio Interface
33
+ iface = gr.Interface(
34
+ fn=predict_segmentation,
35
+ inputs="image",
36
+ outputs="image",
37
+ live=False
38
+ )
39
+
40
+ iface.launch()