import os
from pathlib import Path
from tqdm.notebook import tqdm
import numpy as np
import pandas as pd
from PIL import Image as PILImage
import torch
import cv2
import pickle
import shutil
from detectron2.config import get_cfg
from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.data import DatasetCatalog, MetadataCatalog
from detectron2.utils.visualizer import ColorMode, Visualizer
from math import ceil
import uuid
from flask import Flask, request, send_file
import matplotlib
matplotlib.use('Agg')


app = Flask(__name__)

def get_vinbigdata_dicts_test(imgdir: Path, test_meta: pd.DataFrame, use_cache: bool = True, debug: bool = True):
    debug_str = f"_debug{int(debug)}"
    cache_path = Path(".") / f"dataset_dicts_cache_test{debug_str}.pkl"
    if not use_cache or not cache_path.exists():
        print("Creating data...")
        if debug:
            test_meta = test_meta.iloc[:500]  # For debug

        # Load 1 image to get image size.
        image_id = test_meta.loc[0, "image_id"]
        image_path = os.path.join(imgdir, f"{image_id}.png")
        image = cv2.imread(image_path)
        resized_height, resized_width, ch = image.shape

        dataset_dicts = []
        for index, test_meta_row in tqdm(test_meta.iterrows(), total=len(test_meta)):
            record = {}
            image_id, height, width = test_meta_row.values
            filename = os.path.join(imgdir, f"{image_id}.png")
            record["file_name"] = filename
            record["image_id"] = image_id
            record["height"] = resized_height
            record["width"] = resized_width
            dataset_dicts.append(record)
        
        with open(cache_path, mode="wb") as f:
            pickle.dump(dataset_dicts, f)

    print(f"Load from cache {cache_path}")
    with open(cache_path, mode="rb") as f:
        dataset_dicts = pickle.load(f)
    return dataset_dicts

def format_pred(labels: np.ndarray, boxes: np.ndarray, scores: np.ndarray) -> str:
    pred_strings = []
    for label, score, bbox in zip(labels, scores, boxes):
        xmin, ymin, xmax, ymax = bbox.astype(np.int64)
        pred_strings.append(f"{label} {score} {xmin} {ymin} {xmax} {ymax}")
    return " ".join(pred_strings)

def predict_batch(predictor: DefaultPredictor, im_list: list) -> list:
    with torch.no_grad():
        inputs_list = []
        for original_image in im_list:
            if predictor.input_format == "RGB":
                original_image = original_image[:, :, ::-1]
            height, width = original_image.shape[:2]
            image = torch.as_tensor(original_image.astype("float32").transpose(2, 0, 1))
            inputs = {"image": image, "height": height, "width": width}
            inputs_list.append(inputs)
        predictions = predictor.model(inputs_list)
        return predictions

def csv_create(new_image_path, image_id):
    image = PILImage.open(new_image_path)
    width, height = image.size
    directory = os.path.dirname(new_image_path)

    sample_submission_data = {
        'image_id': [image_id],
        'PredictionString': ['14 1 0 0 1 1']
    }
    sample_submission_df = pd.DataFrame(sample_submission_data)
    sample_submission_path = os.path.join(directory, 'sample_submission.csv')
    sample_submission_df.to_csv(sample_submission_path, index=False)

    test_meta_data = {
        'image_id': [image_id],
        'dim0': [width],
        'dim1': [height]
    }
    test_meta_df = pd.DataFrame(test_meta_data)
    test_meta_path = os.path.join(directory, 'test_meta.csv')
    test_meta_df.to_csv(test_meta_path, index=False)

    print("CSV files have been generated successfully.")
    return sample_submission_path, test_meta_path

def prediction(image_id_main, local_image_path, model_path):
    thing_classes = [
        "Aortic enlargement", "Atelectasis", "Calcification", "Cardiomegaly",
        "Consolidation", "ILD", "Infiltration", "Lung Opacity", "Nodule/Mass",
        "Other lesion", "Pleural effusion", "Pleural thickening", "Pneumothorax", "Pulmonary fibrosis"
    ]
    category_name_to_id = {class_name: index for index, class_name in enumerate(thing_classes)}

    debug = False
    outdir = 'result_images'
    os.makedirs(outdir, exist_ok=True)

    imgdir = f'processed_images_{image_id_main}'
    os.makedirs(imgdir, exist_ok=True)
    shutil.copy(local_image_path, imgdir)
    new_image_path = os.path.join(imgdir, os.path.basename(local_image_path))

    sample_submission, test_meta = csv_create(new_image_path, image_id_main)

    cfg = get_cfg()
    cfg.OUTPUT_DIR = outdir
    cfg.merge_from_file(model_zoo.get_config_file("COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml"))
    cfg.DATASETS.TEST = ()
    cfg.DATALOADER.NUM_WORKERS = 2
    cfg.MODEL.WEIGHTS = model_path
    cfg.SOLVER.IMS_PER_BATCH = 2
    cfg.SOLVER.BASE_LR = 0.001
    cfg.SOLVER.MAX_ITER = 30000
    cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 512
    cfg.MODEL.ROI_HEADS.NUM_CLASSES = len(thing_classes)
    cfg.MODEL.WEIGHTS = model_path
    cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.0

    predictor = DefaultPredictor(cfg)
    unique_id = f"bigdata2_{uuid.uuid4().hex[:8]}"
    DatasetCatalog.register(unique_id, lambda: get_vinbigdata_dicts_test(imgdir, pd.read_csv(test_meta), debug=debug))
    MetadataCatalog.get(unique_id).set(thing_classes=thing_classes)
    metadata = MetadataCatalog.get(unique_id)
    dataset_dicts = get_vinbigdata_dicts_test(imgdir, pd.read_csv(test_meta), debug=debug)

    if debug:
        dataset_dicts = dataset_dicts[:100]

    results_list = []
    batch_size = 4

    for i in tqdm(range(ceil(len(dataset_dicts) / batch_size))):
        inds = list(range(batch_size * i, min(batch_size * (i + 1), len(dataset_dicts))))
        dataset_dicts_batch = [dataset_dicts[i] for i in inds]
        im_list = [cv2.imread(d["file_name"]) for d in dataset_dicts_batch]
        outputs_list = predict_batch(predictor, im_list)

        for im, outputs, d in zip(im_list, outputs_list, dataset_dicts_batch):
            resized_height, resized_width, ch = im.shape

            if outputs["instances"].has("pred_classes"):
                fields = outputs["instances"].get_fields()
                pred_classes = fields["pred_classes"]
                pred_scores = fields["scores"]
                pred_boxes = fields["pred_boxes"].tensor

                h_ratio = d["height"] / resized_height
                w_ratio = d["width"] / resized_width
                pred_boxes[:, [0, 2]] *= w_ratio
                pred_boxes[:, [1, 3]] *= h_ratio

                pred_classes_array = pred_classes.cpu().numpy()
                pred_boxes_array = pred_boxes.cpu().numpy()
                pred_scores_array = pred_scores.cpu().numpy()

                result = {
                    "image_id": d["image_id"],
                    "PredictionString": format_pred(pred_classes_array, pred_boxes_array, pred_scores_array)
                }
            else:
                result = {"image_id": d["image_id"], "PredictionString": "14 1 0 0 1 1"}
            
            results_list.append(result)

    submission_det = pd.DataFrame(results_list, columns=['image_id', 'PredictionString'])
    submission_det_path = os.path.join(outdir, "submission_det.csv")
    submission_det.to_csv(submission_det_path, index=False)

    return submission_det_path

@app.route('/', methods=['POST'])
def predict():
    image_id = request.form['image_id']
    image_file = request.files['image']
    model_path = "model_final.pth"

    local_image_path = os.path.join("input_images", image_file.filename)
    os.makedirs("input_images", exist_ok=True)
    image_file.save(local_image_path)

    submission_det_path = prediction(image_id, local_image_path, model_path)

    return send_file(submission_det_path, as_attachment=True)

if __name__ == '__main__':
    app.run(host='0.0.0.0', port=8888)