VinBigData / app.py
itzjunayed's picture
Update app.py
9a8bd60 verified
import os
from pathlib import Path
from tqdm.notebook import tqdm
import numpy as np
import pandas as pd
from PIL import Image as PILImage
import torch
import cv2
import pickle
import shutil
from detectron2.config import get_cfg
from detectron2 import model_zoo
from detectron2.engine import DefaultPredictor
from detectron2.data import DatasetCatalog, MetadataCatalog
from detectron2.utils.visualizer import ColorMode, Visualizer
from math import ceil
import uuid
from flask import Flask, request, send_file
import matplotlib
matplotlib.use('Agg')
app = Flask(__name__)
def get_vinbigdata_dicts_test(imgdir: Path, test_meta: pd.DataFrame, use_cache: bool = True, debug: bool = True):
debug_str = f"_debug{int(debug)}"
cache_path = Path(".") / f"dataset_dicts_cache_test{debug_str}.pkl"
if not use_cache or not cache_path.exists():
print("Creating data...")
if debug:
test_meta = test_meta.iloc[:500] # For debug
# Load 1 image to get image size.
image_id = test_meta.loc[0, "image_id"]
image_path = os.path.join(imgdir, f"{image_id}.png")
image = cv2.imread(image_path)
resized_height, resized_width, ch = image.shape
dataset_dicts = []
for index, test_meta_row in tqdm(test_meta.iterrows(), total=len(test_meta)):
record = {}
image_id, height, width = test_meta_row.values
filename = os.path.join(imgdir, f"{image_id}.png")
record["file_name"] = filename
record["image_id"] = image_id
record["height"] = resized_height
record["width"] = resized_width
dataset_dicts.append(record)
with open(cache_path, mode="wb") as f:
pickle.dump(dataset_dicts, f)
print(f"Load from cache {cache_path}")
with open(cache_path, mode="rb") as f:
dataset_dicts = pickle.load(f)
return dataset_dicts
def format_pred(labels: np.ndarray, boxes: np.ndarray, scores: np.ndarray) -> str:
pred_strings = []
for label, score, bbox in zip(labels, scores, boxes):
xmin, ymin, xmax, ymax = bbox.astype(np.int64)
pred_strings.append(f"{label} {score} {xmin} {ymin} {xmax} {ymax}")
return " ".join(pred_strings)
def predict_batch(predictor: DefaultPredictor, im_list: list) -> list:
with torch.no_grad():
inputs_list = []
for original_image in im_list:
if predictor.input_format == "RGB":
original_image = original_image[:, :, ::-1]
height, width = original_image.shape[:2]
image = torch.as_tensor(original_image.astype("float32").transpose(2, 0, 1))
inputs = {"image": image, "height": height, "width": width}
inputs_list.append(inputs)
predictions = predictor.model(inputs_list)
return predictions
def csv_create(new_image_path, image_id):
image = PILImage.open(new_image_path)
width, height = image.size
directory = os.path.dirname(new_image_path)
sample_submission_data = {
'image_id': [image_id],
'PredictionString': ['14 1 0 0 1 1']
}
sample_submission_df = pd.DataFrame(sample_submission_data)
sample_submission_path = os.path.join(directory, 'sample_submission.csv')
sample_submission_df.to_csv(sample_submission_path, index=False)
test_meta_data = {
'image_id': [image_id],
'dim0': [width],
'dim1': [height]
}
test_meta_df = pd.DataFrame(test_meta_data)
test_meta_path = os.path.join(directory, 'test_meta.csv')
test_meta_df.to_csv(test_meta_path, index=False)
print("CSV files have been generated successfully.")
return sample_submission_path, test_meta_path
def prediction(image_id_main, local_image_path, model_path):
thing_classes = [
"Aortic enlargement", "Atelectasis", "Calcification", "Cardiomegaly",
"Consolidation", "ILD", "Infiltration", "Lung Opacity", "Nodule/Mass",
"Other lesion", "Pleural effusion", "Pleural thickening", "Pneumothorax", "Pulmonary fibrosis"
]
category_name_to_id = {class_name: index for index, class_name in enumerate(thing_classes)}
debug = False
outdir = 'result_images'
os.makedirs(outdir, exist_ok=True)
imgdir = f'processed_images_{image_id_main}'
os.makedirs(imgdir, exist_ok=True)
shutil.copy(local_image_path, imgdir)
new_image_path = os.path.join(imgdir, os.path.basename(local_image_path))
sample_submission, test_meta = csv_create(new_image_path, image_id_main)
cfg = get_cfg()
cfg.OUTPUT_DIR = outdir
cfg.merge_from_file(model_zoo.get_config_file("COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml"))
cfg.DATASETS.TEST = ()
cfg.DATALOADER.NUM_WORKERS = 2
cfg.MODEL.WEIGHTS = model_path
cfg.SOLVER.IMS_PER_BATCH = 2
cfg.SOLVER.BASE_LR = 0.001
cfg.SOLVER.MAX_ITER = 30000
cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 512
cfg.MODEL.ROI_HEADS.NUM_CLASSES = len(thing_classes)
cfg.MODEL.WEIGHTS = model_path
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.0
predictor = DefaultPredictor(cfg)
unique_id = f"bigdata2_{uuid.uuid4().hex[:8]}"
DatasetCatalog.register(unique_id, lambda: get_vinbigdata_dicts_test(imgdir, pd.read_csv(test_meta), debug=debug))
MetadataCatalog.get(unique_id).set(thing_classes=thing_classes)
metadata = MetadataCatalog.get(unique_id)
dataset_dicts = get_vinbigdata_dicts_test(imgdir, pd.read_csv(test_meta), debug=debug)
if debug:
dataset_dicts = dataset_dicts[:100]
results_list = []
batch_size = 4
for i in tqdm(range(ceil(len(dataset_dicts) / batch_size))):
inds = list(range(batch_size * i, min(batch_size * (i + 1), len(dataset_dicts))))
dataset_dicts_batch = [dataset_dicts[i] for i in inds]
im_list = [cv2.imread(d["file_name"]) for d in dataset_dicts_batch]
outputs_list = predict_batch(predictor, im_list)
for im, outputs, d in zip(im_list, outputs_list, dataset_dicts_batch):
resized_height, resized_width, ch = im.shape
if outputs["instances"].has("pred_classes"):
fields = outputs["instances"].get_fields()
pred_classes = fields["pred_classes"]
pred_scores = fields["scores"]
pred_boxes = fields["pred_boxes"].tensor
h_ratio = d["height"] / resized_height
w_ratio = d["width"] / resized_width
pred_boxes[:, [0, 2]] *= w_ratio
pred_boxes[:, [1, 3]] *= h_ratio
pred_classes_array = pred_classes.cpu().numpy()
pred_boxes_array = pred_boxes.cpu().numpy()
pred_scores_array = pred_scores.cpu().numpy()
result = {
"image_id": d["image_id"],
"PredictionString": format_pred(pred_classes_array, pred_boxes_array, pred_scores_array)
}
else:
result = {"image_id": d["image_id"], "PredictionString": "14 1 0 0 1 1"}
results_list.append(result)
submission_det = pd.DataFrame(results_list, columns=['image_id', 'PredictionString'])
submission_det_path = os.path.join(outdir, "submission_det.csv")
submission_det.to_csv(submission_det_path, index=False)
return submission_det_path
@app.route('/', methods=['POST'])
def predict():
image_id = request.form['image_id']
image_file = request.files['image']
model_path = "model_final.pth"
local_image_path = os.path.join("input_images", image_file.filename)
os.makedirs("input_images", exist_ok=True)
image_file.save(local_image_path)
submission_det_path = prediction(image_id, local_image_path, model_path)
return send_file(submission_det_path, as_attachment=True)
if __name__ == '__main__':
app.run(host='0.0.0.0', port=8888)