anirbans403 commited on
Commit
58f42bc
·
1 Parent(s): 7c6150f

First Commit

Browse files
Files changed (6) hide show
  1. agent.py +214 -0
  2. app.py +209 -0
  3. metadata.jsonl +0 -0
  4. requirements.txt +18 -0
  5. supabase_docs.csv +0 -0
  6. system_prompt.txt +5 -0
agent.py ADDED
@@ -0,0 +1,214 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """LangGraph Agent"""
2
+ import os
3
+ from dotenv import load_dotenv
4
+ from langgraph.graph import START, StateGraph, MessagesState
5
+ from langgraph.prebuilt import tools_condition
6
+ from langgraph.prebuilt import ToolNode
7
+ from langchain_google_genai import ChatGoogleGenerativeAI
8
+ from langchain_groq import ChatGroq
9
+ from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
10
+ from langchain_community.tools.tavily_search import TavilySearchResults
11
+ from langchain_community.document_loaders import WikipediaLoader
12
+ from langchain_community.document_loaders import ArxivLoader
13
+ from langchain_community.vectorstores import SupabaseVectorStore
14
+ from langchain_core.messages import SystemMessage, HumanMessage
15
+ from langchain_core.tools import tool
16
+ from langchain.tools.retriever import create_retriever_tool
17
+ from supabase.client import Client, create_client
18
+
19
+ load_dotenv()
20
+
21
+ @tool
22
+ def multiply(a: int, b: int) -> int:
23
+ """Multiply two numbers.
24
+
25
+ Args:
26
+ a: first int
27
+ b: second int
28
+ """
29
+ return a * b
30
+
31
+ @tool
32
+ def add(a: int, b: int) -> int:
33
+ """Add two numbers.
34
+
35
+ Args:
36
+ a: first int
37
+ b: second int
38
+ """
39
+ return a + b
40
+
41
+ @tool
42
+ def subtract(a: int, b: int) -> int:
43
+ """Subtract two numbers.
44
+
45
+ Args:
46
+ a: first int
47
+ b: second int
48
+ """
49
+ return a - b
50
+
51
+ @tool
52
+ def divide(a: int, b: int) -> int:
53
+ """Divide two numbers.
54
+
55
+ Args:
56
+ a: first int
57
+ b: second int
58
+ """
59
+ if b == 0:
60
+ raise ValueError("Cannot divide by zero.")
61
+ return a / b
62
+
63
+ @tool
64
+ def modulus(a: int, b: int) -> int:
65
+ """Get the modulus of two numbers.
66
+
67
+ Args:
68
+ a: first int
69
+ b: second int
70
+ """
71
+ return a % b
72
+
73
+ @tool
74
+ def wiki_search(query: str) -> str:
75
+ """Search Wikipedia for a query and return maximum 2 results.
76
+
77
+ Args:
78
+ query: The search query."""
79
+ search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
80
+ formatted_search_docs = "\n\n---\n\n".join(
81
+ [
82
+ f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
83
+ for doc in search_docs
84
+ ])
85
+ return {"wiki_results": formatted_search_docs}
86
+
87
+ @tool
88
+ def web_search(query: str) -> str:
89
+ """Search Tavily for a query and return maximum 3 results.
90
+
91
+ Args:
92
+ query: The search query."""
93
+ search_docs = TavilySearchResults(max_results=3).invoke(query=query)
94
+ formatted_search_docs = "\n\n---\n\n".join(
95
+ [
96
+ f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content}\n</Document>'
97
+ for doc in search_docs
98
+ ])
99
+ return {"web_results": formatted_search_docs}
100
+
101
+ @tool
102
+ def arvix_search(query: str) -> str:
103
+ """Search Arxiv for a query and return maximum 3 result.
104
+
105
+ Args:
106
+ query: The search query."""
107
+ search_docs = ArxivLoader(query=query, load_max_docs=3).load()
108
+ formatted_search_docs = "\n\n---\n\n".join(
109
+ [
110
+ f'<Document source="{doc.metadata["source"]}" page="{doc.metadata.get("page", "")}"/>\n{doc.page_content[:1000]}\n</Document>'
111
+ for doc in search_docs
112
+ ])
113
+ return {"arvix_results": formatted_search_docs}
114
+
115
+
116
+
117
+ # load the system prompt from the file
118
+ with open("system_prompt.txt", "r", encoding="utf-8") as f:
119
+ system_prompt = f.read()
120
+
121
+ # System message
122
+ sys_msg = SystemMessage(content=system_prompt)
123
+
124
+ # build a retriever
125
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") # dim=768
126
+ supabase: Client = create_client(
127
+ os.environ.get("SUPABASE_URL"),
128
+ os.environ.get("SUPABASE_SERVICE_KEY"))
129
+ vector_store = SupabaseVectorStore(
130
+ client=supabase,
131
+ embedding= embeddings,
132
+ table_name="documents",
133
+ query_name="match_documents_langchain",
134
+ )
135
+ create_retriever_tool = create_retriever_tool(
136
+ retriever=vector_store.as_retriever(),
137
+ name="Question Search",
138
+ description="A tool to retrieve similar questions from a vector store.",
139
+ )
140
+
141
+
142
+
143
+ tools = [
144
+ multiply,
145
+ add,
146
+ subtract,
147
+ divide,
148
+ modulus,
149
+ wiki_search,
150
+ web_search,
151
+ arvix_search,
152
+ ]
153
+
154
+ # Build graph function
155
+ def build_graph(provider: str = "groq"):
156
+ """Build the graph"""
157
+ # Load environment variables from .env file
158
+ if provider == "google":
159
+ # Google Gemini
160
+ llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
161
+ elif provider == "groq":
162
+ # Groq https://console.groq.com/docs/models
163
+ llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it
164
+ elif provider == "huggingface":
165
+ # TODO: Add huggingface endpoint
166
+ llm = ChatHuggingFace(
167
+ llm=HuggingFaceEndpoint(
168
+ url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
169
+ temperature=0,
170
+ ),
171
+ )
172
+ else:
173
+ raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
174
+ # Bind tools to LLM
175
+ llm_with_tools = llm.bind_tools(tools)
176
+
177
+ # Node
178
+ def assistant(state: MessagesState):
179
+ """Assistant node"""
180
+ return {"messages": [llm_with_tools.invoke(state["messages"])]}
181
+
182
+ def retriever(state: MessagesState):
183
+ """Retriever node"""
184
+ similar_question = vector_store.similarity_search(state["messages"][0].content)
185
+ example_msg = HumanMessage(
186
+ content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
187
+ )
188
+ return {"messages": [sys_msg] + state["messages"] + [example_msg]}
189
+
190
+ builder = StateGraph(MessagesState)
191
+ builder.add_node("retriever", retriever)
192
+ builder.add_node("assistant", assistant)
193
+ builder.add_node("tools", ToolNode(tools))
194
+ builder.add_edge(START, "retriever")
195
+ builder.add_edge("retriever", "assistant")
196
+ builder.add_conditional_edges(
197
+ "assistant",
198
+ tools_condition,
199
+ )
200
+ builder.add_edge("tools", "assistant")
201
+
202
+ # Compile graph
203
+ return builder.compile()
204
+
205
+ # test
206
+ if __name__ == "__main__":
207
+ question = "When was a picture of St. Thomas Aquinas first added to the Wikipedia page on the Principle of double effect?"
208
+ # Build the graph
209
+ graph = build_graph(provider="groq")
210
+ # Run the graph
211
+ messages = [HumanMessage(content=question)]
212
+ messages = graph.invoke({"messages": messages})
213
+ for m in messages["messages"]:
214
+ m.pretty_print()
app.py ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ Basic Agent Evaluation Runner"""
2
+ import os
3
+ import inspect
4
+ import gradio as gr
5
+ import requests
6
+ import pandas as pd
7
+ from langchain_core.messages import HumanMessage
8
+ from agent import build_graph
9
+
10
+
11
+
12
+ # (Keep Constants as is)
13
+ # --- Constants ---
14
+ DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
15
+
16
+ # --- Basic Agent Definition ---
17
+ # ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
18
+
19
+
20
+ class BasicAgent:
21
+ """A langgraph agent."""
22
+ def __init__(self):
23
+ print("BasicAgent initialized.")
24
+ self.graph = build_graph()
25
+
26
+ def __call__(self, question: str) -> str:
27
+ print(f"Agent received question (first 50 chars): {question[:50]}...")
28
+ # Wrap the question in a HumanMessage from langchain_core
29
+ messages = [HumanMessage(content=question)]
30
+ messages = self.graph.invoke({"messages": messages})
31
+ answer = messages['messages'][-1].content
32
+ return answer[14:]
33
+
34
+
35
+ def run_and_submit_all( profile: gr.OAuthProfile | None):
36
+ """
37
+ Fetches all questions, runs the BasicAgent on them, submits all answers,
38
+ and displays the results.
39
+ """
40
+ # --- Determine HF Space Runtime URL and Repo URL ---
41
+ space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
42
+
43
+ if profile:
44
+ username= f"{profile.username}"
45
+ print(f"User logged in: {username}")
46
+ else:
47
+ print("User not logged in.")
48
+ return "Please Login to Hugging Face with the button.", None
49
+
50
+ api_url = DEFAULT_API_URL
51
+ questions_url = f"{api_url}/questions"
52
+ submit_url = f"{api_url}/submit"
53
+
54
+ # 1. Instantiate Agent ( modify this part to create your agent)
55
+ try:
56
+ agent = BasicAgent()
57
+ except Exception as e:
58
+ print(f"Error instantiating agent: {e}")
59
+ return f"Error initializing agent: {e}", None
60
+ # In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
61
+ agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
62
+ print(agent_code)
63
+
64
+ # 2. Fetch Questions
65
+ print(f"Fetching questions from: {questions_url}")
66
+ try:
67
+ response = requests.get(questions_url, timeout=15)
68
+ response.raise_for_status()
69
+ questions_data = response.json()
70
+ if not questions_data:
71
+ print("Fetched questions list is empty.")
72
+ return "Fetched questions list is empty or invalid format.", None
73
+ print(f"Fetched {len(questions_data)} questions.")
74
+ except requests.exceptions.RequestException as e:
75
+ print(f"Error fetching questions: {e}")
76
+ return f"Error fetching questions: {e}", None
77
+ except requests.exceptions.JSONDecodeError as e:
78
+ print(f"Error decoding JSON response from questions endpoint: {e}")
79
+ print(f"Response text: {response.text[:500]}")
80
+ return f"Error decoding server response for questions: {e}", None
81
+ except Exception as e:
82
+ print(f"An unexpected error occurred fetching questions: {e}")
83
+ return f"An unexpected error occurred fetching questions: {e}", None
84
+
85
+ # 3. Run your Agent
86
+ results_log = []
87
+ answers_payload = []
88
+ print(f"Running agent on {len(questions_data)} questions...")
89
+ for item in questions_data:
90
+ task_id = item.get("task_id")
91
+ question_text = item.get("question")
92
+ if not task_id or question_text is None:
93
+ print(f"Skipping item with missing task_id or question: {item}")
94
+ continue
95
+ try:
96
+ submitted_answer = agent(question_text)
97
+ answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
98
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
99
+ except Exception as e:
100
+ print(f"Error running agent on task {task_id}: {e}")
101
+ results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
102
+
103
+ if not answers_payload:
104
+ print("Agent did not produce any answers to submit.")
105
+ return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
106
+
107
+ # 4. Prepare Submission
108
+ submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
109
+ status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
110
+ print(status_update)
111
+
112
+ # 5. Submit
113
+ print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
114
+ try:
115
+ response = requests.post(submit_url, json=submission_data, timeout=60)
116
+ response.raise_for_status()
117
+ result_data = response.json()
118
+ final_status = (
119
+ f"Submission Successful!\n"
120
+ f"User: {result_data.get('username')}\n"
121
+ f"Overall Score: {result_data.get('score', 'N/A')}% "
122
+ f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
123
+ f"Message: {result_data.get('message', 'No message received.')}"
124
+ )
125
+ print("Submission successful.")
126
+ results_df = pd.DataFrame(results_log)
127
+ return final_status, results_df
128
+ except requests.exceptions.HTTPError as e:
129
+ error_detail = f"Server responded with status {e.response.status_code}."
130
+ try:
131
+ error_json = e.response.json()
132
+ error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
133
+ except requests.exceptions.JSONDecodeError:
134
+ error_detail += f" Response: {e.response.text[:500]}"
135
+ status_message = f"Submission Failed: {error_detail}"
136
+ print(status_message)
137
+ results_df = pd.DataFrame(results_log)
138
+ return status_message, results_df
139
+ except requests.exceptions.Timeout:
140
+ status_message = "Submission Failed: The request timed out."
141
+ print(status_message)
142
+ results_df = pd.DataFrame(results_log)
143
+ return status_message, results_df
144
+ except requests.exceptions.RequestException as e:
145
+ status_message = f"Submission Failed: Network error - {e}"
146
+ print(status_message)
147
+ results_df = pd.DataFrame(results_log)
148
+ return status_message, results_df
149
+ except Exception as e:
150
+ status_message = f"An unexpected error occurred during submission: {e}"
151
+ print(status_message)
152
+ results_df = pd.DataFrame(results_log)
153
+ return status_message, results_df
154
+
155
+
156
+ # --- Build Gradio Interface using Blocks ---
157
+ with gr.Blocks() as demo:
158
+ gr.Markdown("# Basic Agent Evaluation Runner")
159
+ gr.Markdown(
160
+ """
161
+ **Instructions:**
162
+
163
+ 1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
164
+ 2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
165
+ 3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
166
+
167
+ ---
168
+ **Disclaimers:**
169
+ Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
170
+ This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
171
+ """
172
+ )
173
+
174
+ gr.LoginButton()
175
+
176
+ run_button = gr.Button("Run Evaluation & Submit All Answers")
177
+
178
+ status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
179
+ # Removed max_rows=10 from DataFrame constructor
180
+ results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
181
+
182
+ run_button.click(
183
+ fn=run_and_submit_all,
184
+ outputs=[status_output, results_table]
185
+ )
186
+
187
+ if __name__ == "__main__":
188
+ print("\n" + "-"*30 + " App Starting " + "-"*30)
189
+ # Check for SPACE_HOST and SPACE_ID at startup for information
190
+ space_host_startup = os.getenv("SPACE_HOST")
191
+ space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
192
+
193
+ if space_host_startup:
194
+ print(f"✅ SPACE_HOST found: {space_host_startup}")
195
+ print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
196
+ else:
197
+ print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
198
+
199
+ if space_id_startup: # Print repo URLs if SPACE_ID is found
200
+ print(f"✅ SPACE_ID found: {space_id_startup}")
201
+ print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
202
+ print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
203
+ else:
204
+ print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
205
+
206
+ print("-"*(60 + len(" App Starting ")) + "\n")
207
+
208
+ print("Launching Gradio Interface for Basic Agent Evaluation...")
209
+ demo.launch(debug=True, share=False)
metadata.jsonl ADDED
The diff for this file is too large to render. See raw diff
 
requirements.txt ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ gradio
2
+ requests
3
+ langchain
4
+ langchain-community
5
+ langchain-core
6
+ langchain-google-genai
7
+ langchain-huggingface
8
+ langchain-groq
9
+ langchain-tavily
10
+ langchain-chroma
11
+ langgraph
12
+ huggingface_hub
13
+ supabase
14
+ arxiv
15
+ pymupdf
16
+ wikipedia
17
+ pgvector
18
+ python-dotenv
supabase_docs.csv ADDED
The diff for this file is too large to render. See raw diff
 
system_prompt.txt ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ You are a helpful assistant tasked with answering questions using a set of tools.
2
+ Now, I will ask you a question. Report your thoughts, and finish your answer with the following template:
3
+ FINAL ANSWER: [YOUR FINAL ANSWER].
4
+ YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.
5
+ Your answer should only start with "FINAL ANSWER: ", then follows with the answer.