"""LangGraph Agent"""
import os
from dotenv import load_dotenv
from langgraph.graph import START, StateGraph, MessagesState
from langgraph.prebuilt import tools_condition
from langgraph.prebuilt import ToolNode
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
from langchain_community.tools.tavily_search import TavilySearchResults
from langchain_community.document_loaders import WikipediaLoader
from langchain_community.document_loaders import ArxivLoader
from langchain_community.vectorstores import SupabaseVectorStore
from langchain_core.messages import SystemMessage, HumanMessage
from langchain_core.tools import tool
from langchain.tools.retriever import create_retriever_tool
from supabase.client import Client, create_client
load_dotenv()
@tool
def multiply(a: int, b: int) -> int:
    """Multiply two numbers.
    Args:
        a: first int
        b: second int
    """
    return a * b
@tool
def add(a: int, b: int) -> int:
    """Add two numbers.
    
    Args:
        a: first int
        b: second int
    """
    return a + b
@tool
def subtract(a: int, b: int) -> int:
    """Subtract two numbers.
    
    Args:
        a: first int
        b: second int
    """
    return a - b
@tool
def divide(a: int, b: int) -> int:
    """Divide two numbers.
    
    Args:
        a: first int
        b: second int
    """
    if b == 0:
        raise ValueError("Cannot divide by zero.")
    return a / b
@tool
def modulus(a: int, b: int) -> int:
    """Get the modulus of two numbers.
    
    Args:
        a: first int
        b: second int
    """
    return a % b
@tool
def wiki_search(query: str) -> str:
    """Search Wikipedia for a query and return maximum 2 results.
    
    Args:
        query: The search query."""
    search_docs = WikipediaLoader(query=query, load_max_docs=2).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'\n{doc.page_content}\n'
            for doc in search_docs
        ])
    return {"wiki_results": formatted_search_docs}
@tool
def web_search(query: str) -> str:
    """Search Tavily for a query and return maximum 3 results.
    
    Args:
        query: The search query."""
    search_docs = TavilySearchResults(max_results=3).invoke(query=query)
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'\n{doc.page_content}\n'
            for doc in search_docs
        ])
    return {"web_results": formatted_search_docs}
@tool
def arvix_search(query: str) -> str:
    """Search Arxiv for a query and return maximum 3 result.
    
    Args:
        query: The search query."""
    search_docs = ArxivLoader(query=query, load_max_docs=3).load()
    formatted_search_docs = "\n\n---\n\n".join(
        [
            f'\n{doc.page_content[:1000]}\n'
            for doc in search_docs
        ])
    return {"arvix_results": formatted_search_docs}
# load the system prompt from the file
with open("system_prompt.txt", "r", encoding="utf-8") as f:
    system_prompt = f.read()
# System message
sys_msg = SystemMessage(content=system_prompt)
# build a retriever
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") #  dim=768
supabase: Client = create_client(
    os.environ.get("SUPABASE_URL"), 
    os.environ.get("SUPABASE_SERVICE_KEY"))
vector_store = SupabaseVectorStore(
    client=supabase,
    embedding= embeddings,
    table_name="documents",
    query_name="match_documents_langchain",
)
create_retriever_tool = create_retriever_tool(
    retriever=vector_store.as_retriever(),
    name="Question Search",
    description="A tool to retrieve similar questions from a vector store.",
)
tools = [
    multiply,
    add,
    subtract,
    divide,
    modulus,
    wiki_search,
    web_search,
    arvix_search,
]
# Build graph function
def build_graph(provider: str = "google"):
    """Build the graph"""
    # Load environment variables from .env file
    if provider == "google":
        # Google Gemini
        llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
    elif provider == "groq":
        # Groq https://console.groq.com/docs/models
        llm = ChatGroq(model="qwen-qwq-32b", temperature=0) # optional : qwen-qwq-32b gemma2-9b-it
    elif provider == "huggingface":
        # TODO: Add huggingface endpoint
        llm = ChatHuggingFace(
            llm=HuggingFaceEndpoint(
                url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
                temperature=0,
            ),
        )
    else:
        raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
    # Bind tools to LLM
    llm_with_tools = llm.bind_tools(tools)
    # Node
    def assistant(state: MessagesState):
        """Assistant node"""
        return {"messages": [llm_with_tools.invoke(state["messages"])]}
    
    # def retriever(state: MessagesState):
      #  """Retriever node"""
       # similar_question = vector_store.similarity_search(state["messages"][0].content)
        #example_msg = HumanMessage(
         #   content=f"Here I provide a similar question and answer for reference: \n\n{similar_question[0].page_content}",
       # )
       # return {"messages": [sys_msg] + state["messages"] + [example_msg]}
    from langchain_core.messages import AIMessage
    def retriever(state: MessagesState):
        query = state["messages"][-1].content
        similar_doc = vector_store.similarity_search(query, k=1)[0]
        content = similar_doc.page_content
        if "Final answer :" in content:
            answer = content.split("Final answer :")[-1].strip()
        else:
            answer = content.strip()
        return {"messages": [AIMessage(content=answer)]}
   # builder = StateGraph(MessagesState)
    #builder.add_node("retriever", retriever)
    #builder.add_node("assistant", assistant)
    #builder.add_node("tools", ToolNode(tools))
    #builder.add_edge(START, "retriever")
    #builder.add_edge("retriever", "assistant")
    #builder.add_conditional_edges(
     #   "assistant",
      #  tools_condition,
    #)
    #builder.add_edge("tools", "assistant")
    builder = StateGraph(MessagesState)
    builder.add_node("retriever", retriever)
    # Retriever ist Start und Endpunkt
    builder.set_entry_point("retriever")
    builder.set_finish_point("retriever")
    # Compile graph
    return builder.compile()