Commit
·
7018286
1
Parent(s):
f0298af
added util files
Browse files- test.py +78 -0
- upload_data.py +89 -0
test.py
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# test_retrieval.py
|
2 |
+
import os
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
5 |
+
from langchain_community.vectorstores import SupabaseVectorStore
|
6 |
+
from supabase.client import Client, create_client
|
7 |
+
|
8 |
+
def test_retrieval():
|
9 |
+
"""
|
10 |
+
A simple script to test similarity search on your Supabase vector store.
|
11 |
+
"""
|
12 |
+
# Load environment variables from .env file
|
13 |
+
load_dotenv()
|
14 |
+
|
15 |
+
# --- 1. Connect to the Database ---
|
16 |
+
print("Connecting to Supabase...")
|
17 |
+
supabase_url = os.environ.get("SUPABASE_URL")
|
18 |
+
supabase_key = os.environ.get("SUPABASE_SERVICE_KEY")
|
19 |
+
|
20 |
+
if not supabase_url or not supabase_key:
|
21 |
+
print("Error: SUPABASE_URL and SUPABASE_SERVICE_KEY must be set in your .env file.")
|
22 |
+
return
|
23 |
+
|
24 |
+
try:
|
25 |
+
supabase: Client = create_client(supabase_url, supabase_key)
|
26 |
+
print("Successfully connected to Supabase.")
|
27 |
+
except Exception as e:
|
28 |
+
print(f"Error connecting to Supabase: {e}")
|
29 |
+
return
|
30 |
+
|
31 |
+
# --- 2. Initialize Embeddings and Vector Store ---
|
32 |
+
print("Initializing embeddings model...")
|
33 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
34 |
+
|
35 |
+
vector_store = SupabaseVectorStore(
|
36 |
+
client=supabase,
|
37 |
+
embedding=embeddings,
|
38 |
+
table_name="documents",
|
39 |
+
query_name="match_documents",
|
40 |
+
)
|
41 |
+
print("Vector store initialized.")
|
42 |
+
|
43 |
+
# --- 3. Start the Interactive Test Loop ---
|
44 |
+
print("\nEnter a question to test the similarity search.")
|
45 |
+
print("Type 'exit' or 'quit' to stop the script.\n")
|
46 |
+
|
47 |
+
while True:
|
48 |
+
try:
|
49 |
+
# Get user input
|
50 |
+
query = input("Question: ")
|
51 |
+
if query.lower() in ['exit', 'quit']:
|
52 |
+
print("Exiting...")
|
53 |
+
break
|
54 |
+
|
55 |
+
if not query:
|
56 |
+
continue
|
57 |
+
|
58 |
+
# --- 4. Perform the Similarity Search ---
|
59 |
+
print("\nSearching for similar documents...")
|
60 |
+
# We ask for the top 3 matches (k=3) to get more context
|
61 |
+
similar_docs = vector_store.similarity_search_with_relevance_scores(query, k=3)
|
62 |
+
|
63 |
+
# --- 5. Display the Results ---
|
64 |
+
if not similar_docs:
|
65 |
+
print("\n--- No similar documents found in the database. ---")
|
66 |
+
print("This might mean your database is empty. Please run the data upload cell in test.ipynb.\n")
|
67 |
+
else:
|
68 |
+
print(f"\n--- Found {len(similar_docs)} similar document(s) ---")
|
69 |
+
for i, (doc, score) in enumerate(similar_docs):
|
70 |
+
print(f"\n--- Result {i+1} (Similarity Score: {score:.4f}) ---")
|
71 |
+
print(doc.page_content)
|
72 |
+
print("\n-------------------------------------\n")
|
73 |
+
|
74 |
+
except Exception as e:
|
75 |
+
print(f"An error occurred: {e}")
|
76 |
+
|
77 |
+
if __name__ == "__main__":
|
78 |
+
test_retrieval()
|
upload_data.py
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# upload_data.py
|
2 |
+
import os
|
3 |
+
import json
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
6 |
+
from supabase.client import Client, create_client
|
7 |
+
|
8 |
+
def upload_data_to_supabase():
|
9 |
+
"""
|
10 |
+
Reads data from metadata.jsonl, generates embeddings,
|
11 |
+
and uploads it to a Supabase table named 'documents'.
|
12 |
+
"""
|
13 |
+
# --- 1. Load Environment and Configuration ---
|
14 |
+
print("Loading configuration...")
|
15 |
+
load_dotenv()
|
16 |
+
|
17 |
+
supabase_url = os.environ.get("SUPABASE_URL")
|
18 |
+
supabase_key = os.environ.get("SUPABASE_SERVICE_KEY")
|
19 |
+
|
20 |
+
if not supabase_url or not supabase_key:
|
21 |
+
print("Error: SUPABASE_URL and SUPABASE_SERVICE_KEY must be set in your .env file.")
|
22 |
+
return
|
23 |
+
|
24 |
+
# --- 2. Load the Local Data ---
|
25 |
+
print("Loading data from metadata.jsonl...")
|
26 |
+
try:
|
27 |
+
with open('metadata.jsonl', 'r', encoding='utf-8') as jsonl_file:
|
28 |
+
json_list = list(jsonl_file)
|
29 |
+
|
30 |
+
json_QA = []
|
31 |
+
for json_str in json_list:
|
32 |
+
json_QA.append(json.loads(json_str))
|
33 |
+
print(f"Successfully loaded {len(json_QA)} records from metadata.jsonl.")
|
34 |
+
except FileNotFoundError:
|
35 |
+
print("Error: metadata.jsonl not found. Make sure it is in the same directory.")
|
36 |
+
return
|
37 |
+
except Exception as e:
|
38 |
+
print(f"Error reading metadata.jsonl: {e}")
|
39 |
+
return
|
40 |
+
|
41 |
+
# --- 3. Initialize Supabase Client and Embeddings Model ---
|
42 |
+
print("Connecting to Supabase and initializing embeddings model...")
|
43 |
+
try:
|
44 |
+
supabase: Client = create_client(supabase_url, supabase_key)
|
45 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
46 |
+
print("Connection and initialization successful.")
|
47 |
+
except Exception as e:
|
48 |
+
print(f"Error during initialization: {e}")
|
49 |
+
return
|
50 |
+
|
51 |
+
# --- 4. Prepare Documents for Upload ---
|
52 |
+
print("Preparing documents and generating embeddings. This may take a few minutes...")
|
53 |
+
docs_to_upload = []
|
54 |
+
for i, sample in enumerate(json_QA):
|
55 |
+
# Create the main content string
|
56 |
+
content = f"Question : {sample['Question']}\n\nFinal answer : {sample['Final answer']}"
|
57 |
+
|
58 |
+
# Create the vector embedding for the content
|
59 |
+
embedding = embeddings.embed_query(content)
|
60 |
+
|
61 |
+
# Create the structured document for upload
|
62 |
+
doc = {
|
63 |
+
"content": content,
|
64 |
+
"metadata": {"source": sample['task_id']}, # This is now a proper JSON object
|
65 |
+
"embedding": embedding
|
66 |
+
}
|
67 |
+
docs_to_upload.append(doc)
|
68 |
+
|
69 |
+
# Optional: Print progress
|
70 |
+
if (i + 1) % 10 == 0:
|
71 |
+
print(f"Processed {i + 1}/{len(json_QA)} documents...")
|
72 |
+
|
73 |
+
print("All documents have been processed.")
|
74 |
+
|
75 |
+
# --- 5. Upload to Supabase ---
|
76 |
+
print("Uploading documents to Supabase...")
|
77 |
+
try:
|
78 |
+
response = supabase.table("documents").insert(docs_to_upload).execute()
|
79 |
+
print("\n--- Success! ---")
|
80 |
+
print(f"Successfully uploaded {len(docs_to_upload)} documents to your Supabase table.")
|
81 |
+
# The 'response' object from Supabase V2 doesn't contain a simple count,
|
82 |
+
# but a successful execution with no errors means the data is there.
|
83 |
+
except Exception as e:
|
84 |
+
print("\n--- Error during upload ---")
|
85 |
+
print(f"An error occurred while uploading to Supabase: {e}")
|
86 |
+
print("Please check your Supabase table schema and permissions.")
|
87 |
+
|
88 |
+
if __name__ == "__main__":
|
89 |
+
upload_data_to_supabase()
|