Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| from gradio_client import Client | |
| from audio_recorder_streamlit import audio_recorder | |
| # Constants | |
| TITLE = "Llama2 70B Chatbot" | |
| DESCRIPTION = """ | |
| This Space demonstrates model [Llama-2-70b-chat-hf](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf) by Meta, a Llama 2 model with 70B parameters fine-tuned for chat instructions. | |
| | Model | Llama2 | Llama2-hf | Llama2-chat | Llama2-chat-hf | | |
| |---|---|---|---|---| | |
| | 70B | [Link](https://huggingface.co/meta-llama/Llama-2-70b) | [Link](https://huggingface.co/meta-llama/Llama-2-70b-hf) | [Link](https://huggingface.co/meta-llama/Llama-2-70b-chat) | [Link](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf) | | |
| --- | |
| """ | |
| # Initialize client | |
| with st.sidebar: | |
| # system_promptSide = st.text_input("Optional system prompt:") | |
| temperatureSide = st.slider("Temperature", min_value=0.0, max_value=1.0, value=0.9, step=0.05) | |
| max_new_tokensSide = st.slider("Max new tokens", min_value=0.0, max_value=4096.0, value=4096.0, step=64.0) | |
| # ToppSide = st.slider("Top-p (nucleus sampling)", min_value=0.0, max_value=1.0, value=0.6, step=0.05) | |
| # RepetitionpenaltySide = st.slider("Repetition penalty", min_value=0.0, max_value=2.0, value=1.2, step=0.05) | |
| # Prediction function | |
| def predict(message, system_prompt='', temperature=0.7, max_new_tokens=4096,Topp=0.5,Repetitionpenalty=1.2): | |
| with st.status("Starting client"): | |
| client = Client("https://ysharma-explore-llamav2-with-tgi.hf.space/") | |
| st.write("Requesting client") | |
| with st.status("Requesting LLama-2"): | |
| st.write("Requesting API") | |
| response = client.predict( | |
| message, # str in 'Message' Textbox component | |
| system_prompt, # str in 'Optional system prompt' Textbox component | |
| temperature, # int | float (numeric value between 0.0 and 1.0) | |
| max_new_tokens, # int | float (numeric value between 0 and 4096) | |
| Topp, # int | float (numeric value between 0.0 and 1) | |
| Repetitionpenalty, # int | float (numeric value between 1.0 and 2.0) | |
| api_name="/chat_1" | |
| ) | |
| st.write("Done") | |
| return response | |
| # Streamlit UI | |
| st.title(TITLE) | |
| st.write(DESCRIPTION) | |
| if "messages" not in st.session_state: | |
| st.session_state.messages = [] | |
| # Display chat messages from history on app rerun | |
| for message in st.session_state.messages: | |
| with st.chat_message(message["role"], avatar=("π§βπ»" if message["role"] == 'human' else 'π¦')): | |
| st.markdown(message["content"]) | |
| # React to user input | |
| if prompt := st.chat_input("Ask LLama-2-70b anything..."): | |
| # Display user message in chat message container | |
| st.chat_message("human",avatar = "π§βπ»").markdown(prompt) | |
| # Add user message to chat history | |
| st.session_state.messages.append({"role": "human", "content": prompt}) | |
| response = predict(message=prompt)#, temperature= temperatureSide,max_new_tokens=max_new_tokensSide) | |
| # Display assistant response in chat message container | |
| with st.chat_message("assistant", avatar='π¦'): | |
| st.markdown(response) | |
| # Add assistant response to chat history | |
| st.session_state.messages.append({"role": "assistant", "content": response}) | |
| audio_bytes = audio_recorder() | |
| if audio_bytes: | |
| st.audio(audio_bytes, format="audio/wav") |