isThisYouLLM commited on
Commit
f7594ce
·
verified ·
1 Parent(s): c95f8ab

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +156 -0
app.py ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from streamlit_option_menu import option_menu
3
+ import numpy as np
4
+ import os
5
+ import datasets
6
+ import argparse
7
+ from typing import Tuple
8
+ import transformers
9
+ import torch
10
+ from torch.utils.data import Dataset
11
+ import matplotlib as plt
12
+ import random
13
+ from tqdm import tqdm
14
+ import pandas as pd
15
+ from huggingface_hub import login
16
+ from torch.optim import lr_scheduler
17
+ from typing import Callable, Dict, List, Tuple, Union
18
+ import csv
19
+ from timeit import default_timer as timer
20
+
21
+
22
+
23
+
24
+
25
+ def load_tokenizer(tokenizer_name:str)->object:
26
+ """
27
+ Function to load the tokenizer by the model's name
28
+ Args:
29
+ - tokenizer_name -> the name of the tokenizerto download
30
+ Returns:
31
+ - tokenizer -> returns respectively the model and the tokenizer
32
+ """
33
+ tokenizer = transformers.AutoTokenizer.from_pretrained("Salesforce/codet5p-770m")
34
+
35
+
36
+ return tokenizer
37
+
38
+
39
+ def load_model(model_name:str)->object:
40
+ """
41
+ Function for model loading
42
+ Args:
43
+ - model_name -> the name of the model
44
+ Returns:
45
+ - model,tokenizer -> returns respectively the model and the tokenizer
46
+ """
47
+
48
+ print(f'Loading model {model_name}...')
49
+
50
+
51
+ model_kwargs = {}
52
+
53
+ model_kwargs.update(dict( torch_dtype=torch.bfloat16))
54
+ transformers.T5EncoderModel._keys_to_ignore_on_load_unexpected = ["decoder.*"]
55
+ model_encoder = transformers.T5EncoderModel.from_pretrained("Salesforce/codet5p-770m", **model_kwargs)
56
+
57
+ print("---MODEL LOADED---")
58
+
59
+
60
+
61
+ return model_encoder
62
+
63
+ class stylometer_classifier(torch.nn.Module):
64
+ def __init__(self,pretrained_encoder,dimensionality):
65
+ super(stylometer_classifier, self).__init__()
66
+ self.modelBase = pretrained_encoder
67
+ self.pre_classifier = torch.nn.Linear(dimensionality, 768, dtype=torch.bfloat16)
68
+ self.activation = torch.nn.ReLU()
69
+ self.dropout = torch.nn.Dropout(0.2)
70
+ self.classifier = torch.nn.Linear(768, 1, dtype=torch.bfloat16)
71
+
72
+
73
+
74
+
75
+ def forward(self, input_ids, padding_mask):
76
+ output_1 = self.modelBase(input_ids=input_ids, attention_mask=padding_mask)
77
+ hidden_state = output_1[0]
78
+ #Here i take only the cls token representation for further classification
79
+ cls_output = hidden_state[:, 0]
80
+ pooler = self.pre_classifier(cls_output)
81
+ afterActivation = self.activation(pooler)
82
+ pooler_after_act = self.dropout(afterActivation)
83
+ output = torch.sigmoid(self.classifier(pooler_after_act))
84
+
85
+ if output>=0.07:
86
+ return {"my_class":"It's a Human!",
87
+ "prob":output}
88
+ else:
89
+ return {"my_class":"It's an LLM!",
90
+ "prob":output}
91
+
92
+
93
+ return output
94
+
95
+ def adapt_model(model:object, dim:int=1024) -> object:
96
+ """
97
+ This function returns the model with a classification head
98
+ """
99
+ newModel = stylometer_classifier(model,dimensionality=dim)
100
+
101
+ return newModel
102
+
103
+
104
+
105
+
106
+
107
+ def main():
108
+ parser = argparse.ArgumentParser()
109
+ parser.add_argument('--model_name', type=str, default="Salesforce/codet5p-770m")
110
+ parser.add_argument('--path_checkpoint1', type=str, default="checkpoint.bin")
111
+
112
+ args = parser.parse_args()
113
+
114
+
115
+ model_name = args.model_name
116
+ checkpoint1 = args.path_checkpoint1
117
+
118
+
119
+ DEVICE = "cpu"
120
+
121
+
122
+
123
+
124
+ #load tokenizer
125
+ tokenizer = load_tokenizer(model_name)
126
+ print("tokenizer loaded!")
127
+
128
+
129
+
130
+
131
+
132
+ #loading model and tokenizer for functional translation
133
+ model = load_model(model_name)
134
+
135
+ #adding classification head to the model
136
+ model = adapt_model(model, dim=model.shared.embedding_dim)
137
+
138
+
139
+
140
+
141
+ model.load_state_dict(torch.load(checkpoint1,map_location='cpu'))
142
+ model = model.eval()
143
+ st.title("Human-AI stylometer - Multilingual_multiprovenance")
144
+ text = st.text_area("insert your code here")
145
+ button = st.button("send")
146
+ if button or text:
147
+ input = tokenizer([text])
148
+ out= model(torch.tensor(input.input_ids),torch.tensor(input.attention_mask))
149
+ #st.json(out)
150
+ st.write(out["my_class"])
151
+
152
+
153
+
154
+
155
+ if __name__ == '__main__':
156
+ main()