Spaces:
Runtime error
Runtime error
gbarbadillo
commited on
Commit
·
39e14ce
1
Parent(s):
e3f1149
refactor and bugfix
Browse files
app.py
CHANGED
|
@@ -8,38 +8,7 @@ from insightface.utils import face_align
|
|
| 8 |
import gradio as gr
|
| 9 |
from huggingface_hub import hf_hub_download
|
| 10 |
|
| 11 |
-
|
| 12 |
-
vae_model_path = "stabilityai/sd-vae-ft-mse"
|
| 13 |
-
image_encoder_path = "IP-Adapter/models/image_encoder"
|
| 14 |
-
ip_ckpt = "IP-Adapter-FaceID/ip-adapter-faceid-plus_sd15.bin"
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
if torch.cuda.is_available():
|
| 18 |
-
device = 'cuda'
|
| 19 |
-
torch_dtype = torch.float16
|
| 20 |
-
else:
|
| 21 |
-
device = 'cpu'
|
| 22 |
-
torch_dtype = torch.float32
|
| 23 |
-
print(f'Using device: {device}')
|
| 24 |
-
|
| 25 |
-
noise_scheduler = DDIMScheduler(
|
| 26 |
-
num_train_timesteps=1000,
|
| 27 |
-
beta_start=0.00085,
|
| 28 |
-
beta_end=0.012,
|
| 29 |
-
beta_schedule="scaled_linear",
|
| 30 |
-
clip_sample=False,
|
| 31 |
-
set_alpha_to_one=False,
|
| 32 |
-
steps_offset=1,
|
| 33 |
-
)
|
| 34 |
-
vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch_dtype)
|
| 35 |
-
pipe = StableDiffusionPipeline.from_pretrained(
|
| 36 |
-
base_model_path,
|
| 37 |
-
torch_dtype=torch_dtype,
|
| 38 |
-
scheduler=noise_scheduler,
|
| 39 |
-
vae=vae,
|
| 40 |
-
feature_extractor=None,
|
| 41 |
-
safety_checker=None
|
| 42 |
-
)
|
| 43 |
|
| 44 |
def download_models():
|
| 45 |
hf_hub_download(
|
|
@@ -56,10 +25,45 @@ def download_models():
|
|
| 56 |
local_dir='IP-Adapter')
|
| 57 |
|
| 58 |
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
|
|
|
|
|
|
| 61 |
|
| 62 |
|
|
|
|
| 63 |
app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
|
| 64 |
app.prepare(ctx_id=0, det_size=(640, 640), det_thresh=0.2)
|
| 65 |
|
|
|
|
| 8 |
import gradio as gr
|
| 9 |
from huggingface_hub import hf_hub_download
|
| 10 |
|
| 11 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
def download_models():
|
| 14 |
hf_hub_download(
|
|
|
|
| 25 |
local_dir='IP-Adapter')
|
| 26 |
|
| 27 |
|
| 28 |
+
def get_ip_model():
|
| 29 |
+
download_models()
|
| 30 |
+
base_model_path = "SG161222/Realistic_Vision_V4.0_noVAE"
|
| 31 |
+
vae_model_path = "stabilityai/sd-vae-ft-mse"
|
| 32 |
+
image_encoder_path = "IP-Adapter/models/image_encoder"
|
| 33 |
+
ip_ckpt = "IP-Adapter-FaceID/ip-adapter-faceid-plus_sd15.bin"
|
| 34 |
+
|
| 35 |
+
if torch.cuda.is_available():
|
| 36 |
+
device = 'cuda'
|
| 37 |
+
torch_dtype = torch.float16
|
| 38 |
+
else:
|
| 39 |
+
device = 'cpu'
|
| 40 |
+
torch_dtype = torch.float32
|
| 41 |
+
print(f'Using device: {device}')
|
| 42 |
+
|
| 43 |
+
noise_scheduler = DDIMScheduler(
|
| 44 |
+
num_train_timesteps=1000,
|
| 45 |
+
beta_start=0.00085,
|
| 46 |
+
beta_end=0.012,
|
| 47 |
+
beta_schedule="scaled_linear",
|
| 48 |
+
clip_sample=False,
|
| 49 |
+
set_alpha_to_one=False,
|
| 50 |
+
steps_offset=1,
|
| 51 |
+
)
|
| 52 |
+
vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch_dtype)
|
| 53 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
| 54 |
+
base_model_path,
|
| 55 |
+
torch_dtype=torch_dtype,
|
| 56 |
+
scheduler=noise_scheduler,
|
| 57 |
+
vae=vae,
|
| 58 |
+
feature_extractor=None,
|
| 59 |
+
safety_checker=None
|
| 60 |
+
)
|
| 61 |
|
| 62 |
+
ip_model = IPAdapterFaceIDPlus(pipe, image_encoder_path, ip_ckpt, device, num_tokens=4, torch_dtype=torch_dtype)
|
| 63 |
+
return ip_model
|
| 64 |
|
| 65 |
|
| 66 |
+
ip_model = get_ip_model()
|
| 67 |
app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
|
| 68 |
app.prepare(ctx_id=0, det_size=(640, 640), det_thresh=0.2)
|
| 69 |
|