Spaces:
Build error
Build error
change tokenizer and model instance to load summarizer model
Browse files
app.py
CHANGED
|
@@ -4,123 +4,132 @@ import torch
|
|
| 4 |
from torch import nn
|
| 5 |
import pickle
|
| 6 |
import pandas as pd
|
| 7 |
-
from transformers import
|
| 8 |
import sentencepiece
|
| 9 |
import string
|
| 10 |
import requests
|
| 11 |
|
|
|
|
| 12 |
@st.cache_resource
|
| 13 |
def load_stuff():
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
dls, learn, books, tokenizer, model = load_stuff()
|
| 31 |
|
| 32 |
-
|
|
|
|
| 33 |
def get_3_recs(book):
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
|
|
|
| 42 |
def search_book_description(title):
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
| 62 |
return None
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
return None
|
| 67 |
-
|
| 68 |
-
#function to ensure summaries end with punctuation
|
| 69 |
def cut(sum):
|
| 70 |
last_punc_idx = max(sum.rfind(p) for p in string.punctuation)
|
| 71 |
-
output = sum[:last_punc_idx + 1]
|
| 72 |
return output
|
| 73 |
|
| 74 |
|
| 75 |
-
#function to summarize
|
| 76 |
def summarize(des_list):
|
| 77 |
if "No description available." in des_list:
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
else:
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
|
|
|
|
|
|
|
|
|
| 97 |
def get_covers(recs):
|
| 98 |
-
|
| 99 |
-
|
| 100 |
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
st.
|
|
|
|
|
|
|
|
|
|
| 104 |
options = books["Book-Title"].tolist()
|
| 105 |
-
input = st.selectbox(
|
| 106 |
if st.button("Get recommendations"):
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
|
|
|
| 4 |
from torch import nn
|
| 5 |
import pickle
|
| 6 |
import pandas as pd
|
| 7 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 8 |
import sentencepiece
|
| 9 |
import string
|
| 10 |
import requests
|
| 11 |
|
| 12 |
+
|
| 13 |
@st.cache_resource
|
| 14 |
def load_stuff():
|
| 15 |
+
# Load the data loader
|
| 16 |
+
dls = pd.read_pickle("dataloader.pkl")
|
| 17 |
+
# Create an instance of the model
|
| 18 |
+
learn = collab_learner(dls, use_nn=True, layers=[20, 10], y_range=(0, 10.5))
|
| 19 |
+
# Load the saved state dictionary
|
| 20 |
+
state_dict = torch.load("myModel.pth", map_location=torch.device("cpu"))
|
| 21 |
+
# Assign the loaded state dictionary to the model's load_state_dict() method
|
| 22 |
+
learn.model.load_state_dict(state_dict)
|
| 23 |
+
# load books dataframe
|
| 24 |
+
books = pd.read_csv("./data/BX_Books.csv", sep=";", encoding="latin-1")
|
| 25 |
+
# load tokenizer
|
| 26 |
+
tokenizer = AutoTokenizer.from_pretrained("pszemraj/pegasus-x-large-book-summary")
|
| 27 |
+
# load model
|
| 28 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(
|
| 29 |
+
"pszemraj/pegasus-x-large-book-summary"
|
| 30 |
+
)
|
| 31 |
+
return dls, learn, books, tokenizer, model
|
| 32 |
+
|
| 33 |
|
| 34 |
dls, learn, books, tokenizer, model = load_stuff()
|
| 35 |
|
| 36 |
+
|
| 37 |
+
# function to get recommendations
|
| 38 |
def get_3_recs(book):
|
| 39 |
+
book_factors = learn.model.embeds[1].weight
|
| 40 |
+
idx = dls.classes["title"].o2i[book]
|
| 41 |
+
distances = nn.CosineSimilarity(dim=1)(book_factors, book_factors[idx][None])
|
| 42 |
+
idxs = distances.argsort(descending=True)[1:4]
|
| 43 |
+
recs = [dls.classes["title"][i] for i in idxs]
|
| 44 |
+
return recs
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
# function to get descriptions from Google Books
|
| 48 |
def search_book_description(title):
|
| 49 |
+
# Google Books API endpoint for book search
|
| 50 |
+
url = "https://www.googleapis.com/books/v1/volumes"
|
| 51 |
+
# Parameters for the book search
|
| 52 |
+
params = {"q": title, "maxResults": 1}
|
| 53 |
+
# Send GET request to Google Books API
|
| 54 |
+
response = requests.get(url, params=params)
|
| 55 |
+
# Check if the request was successful
|
| 56 |
+
if response.status_code == 200:
|
| 57 |
+
# Parse the JSON response to extract the book description
|
| 58 |
+
data = response.json()
|
| 59 |
+
|
| 60 |
+
if "items" in data and len(data["items"]) > 0:
|
| 61 |
+
book_description = data["items"][0]["volumeInfo"].get(
|
| 62 |
+
"description", "No description available."
|
| 63 |
+
)
|
| 64 |
+
return book_description
|
| 65 |
+
else:
|
| 66 |
+
print("No book found with the given title.")
|
| 67 |
+
return None
|
| 68 |
+
else:
|
| 69 |
+
# If the request failed, print the error message
|
| 70 |
+
print("Error:", response.status_code, response.text)
|
| 71 |
return None
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
# function to ensure summaries end with punctuation
|
|
|
|
|
|
|
|
|
|
| 75 |
def cut(sum):
|
| 76 |
last_punc_idx = max(sum.rfind(p) for p in string.punctuation)
|
| 77 |
+
output = sum[: last_punc_idx + 1]
|
| 78 |
return output
|
| 79 |
|
| 80 |
|
| 81 |
+
# function to summarize
|
| 82 |
def summarize(des_list):
|
| 83 |
if "No description available." in des_list:
|
| 84 |
+
idx = des_list.index("No description available.")
|
| 85 |
+
des = des_list.copy()
|
| 86 |
+
des.pop(idx)
|
| 87 |
+
rest = summarize(des)
|
| 88 |
+
rest.insert(idx, "No description available.")
|
| 89 |
+
return rest
|
| 90 |
+
else:
|
| 91 |
+
# Tokenize all the descriptions in the list
|
| 92 |
+
encoded_inputs = tokenizer(
|
| 93 |
+
des_list, truncation=True, padding="longest", return_tensors="pt"
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
# Generate summaries for all the inputs
|
| 97 |
+
summaries = model.generate(**encoded_inputs, max_new_tokens=100)
|
| 98 |
+
|
| 99 |
+
# Decode the summaries and process them
|
| 100 |
+
outputs = tokenizer.batch_decode(summaries, skip_special_tokens=True)
|
| 101 |
+
outputs = list(map(cut, outputs))
|
| 102 |
+
return outputs
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
# function to get cover images
|
| 106 |
def get_covers(recs):
|
| 107 |
+
imgs = [books[books["Book-Title"] == r]["Image-URL-L"].tolist()[0] for r in recs]
|
| 108 |
+
return imgs
|
| 109 |
|
| 110 |
+
|
| 111 |
+
# streamlit app construction
|
| 112 |
+
st.title("Your digital librarian")
|
| 113 |
+
st.markdown(
|
| 114 |
+
"Hi there! I recommend you books based on one you love (which might not be in the same genre because that's boring) and give you my own synopsis of each book. Enjoy!"
|
| 115 |
+
)
|
| 116 |
options = books["Book-Title"].tolist()
|
| 117 |
+
input = st.selectbox("Select your favorite book", options)
|
| 118 |
if st.button("Get recommendations"):
|
| 119 |
+
recs = get_3_recs(input)
|
| 120 |
+
descriptions = list(map(search_book_description, recs))
|
| 121 |
+
des_sums = summarize(descriptions)
|
| 122 |
+
imgs = get_covers(recs)
|
| 123 |
+
|
| 124 |
+
col1, col2, col3 = st.columns(3)
|
| 125 |
+
col1.image(imgs[0])
|
| 126 |
+
col1.markdown(f"**{recs[0]}**")
|
| 127 |
+
col1.write(des_sums[0])
|
| 128 |
+
|
| 129 |
+
col2.image(imgs[1])
|
| 130 |
+
col2.markdown(f"**{recs[1]}**")
|
| 131 |
+
col2.write(des_sums[1])
|
| 132 |
+
|
| 133 |
+
col3.image(imgs[2])
|
| 134 |
+
col3.markdown(f"**{recs[2]}**")
|
| 135 |
+
col3.write(des_sums[2])
|
|
|
|
|
|
|
|
|