Spaces:
Running
Running
Patryk Ptasiński
commited on
Commit
·
b366822
1
Parent(s):
cc86f1b
Add 15+ embedding models with dropdown selector and comprehensive API support
Browse files
CLAUDE.md
CHANGED
|
@@ -4,7 +4,7 @@ This file provides guidance to Claude Code (claude.ai/code) when working with co
|
|
| 4 |
|
| 5 |
## Project Overview
|
| 6 |
|
| 7 |
-
This is a Hugging Face Spaces application that provides text embeddings using the Nomic
|
| 8 |
|
| 9 |
## Key Commands
|
| 10 |
|
|
@@ -29,11 +29,12 @@ huggingface-cli login
|
|
| 29 |
## Architecture
|
| 30 |
|
| 31 |
The application consists of a single `app.py` file with:
|
| 32 |
-
- **Model
|
| 33 |
-
- **
|
| 34 |
-
- **
|
| 35 |
-
- **
|
| 36 |
-
- **
|
|
|
|
| 37 |
|
| 38 |
## Important Configuration Details
|
| 39 |
|
|
@@ -48,16 +49,20 @@ Two options for API access:
|
|
| 48 |
|
| 49 |
1. **Direct FastAPI endpoint** (no queue):
|
| 50 |
```bash
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
curl -X POST https://ipepe-nomic-embeddings.hf.space/embed \
|
| 52 |
-H "Content-Type: application/json" \
|
| 53 |
-
-d '{"text": "your text"}'
|
| 54 |
```
|
| 55 |
|
| 56 |
2. **Gradio client** (handles queue automatically):
|
| 57 |
```python
|
| 58 |
from gradio_client import Client
|
| 59 |
client = Client("ipepe/nomic-embeddings")
|
| 60 |
-
result = client.predict("text to embed", api_name="/predict")
|
| 61 |
```
|
| 62 |
|
| 63 |
## Deployment Notes
|
|
|
|
| 4 |
|
| 5 |
## Project Overview
|
| 6 |
|
| 7 |
+
This is a Hugging Face Spaces application that provides text embeddings using 15+ state-of-the-art embedding models including Nomic, BGE, Snowflake Arctic, IBM Granite, and sentence-transformers models. It runs on CPU and provides both a web interface and API endpoints for generating text embeddings with model selection.
|
| 8 |
|
| 9 |
## Key Commands
|
| 10 |
|
|
|
|
| 29 |
## Architecture
|
| 30 |
|
| 31 |
The application consists of a single `app.py` file with:
|
| 32 |
+
- **Model Configuration**: Dictionary of 15+ embedding models with trust_remote_code settings (lines 10-26)
|
| 33 |
+
- **Model Caching**: Dynamic model loading with caching to avoid reloading (lines 32-42)
|
| 34 |
+
- **FastAPI App**: Direct HTTP endpoints at `/embed` and `/models` (lines 44, 57-102)
|
| 35 |
+
- **Embedding Function**: Multi-model wrapper that calls model.encode() (lines 49-53)
|
| 36 |
+
- **Gradio Interface**: UI with model dropdown selector and API endpoint (lines 106-135)
|
| 37 |
+
- **Dual Server**: FastAPI mounted with Gradio using uvicorn (lines 214-219)
|
| 38 |
|
| 39 |
## Important Configuration Details
|
| 40 |
|
|
|
|
| 49 |
|
| 50 |
1. **Direct FastAPI endpoint** (no queue):
|
| 51 |
```bash
|
| 52 |
+
# List models
|
| 53 |
+
curl https://ipepe-nomic-embeddings.hf.space/models
|
| 54 |
+
|
| 55 |
+
# Generate embedding with specific model
|
| 56 |
curl -X POST https://ipepe-nomic-embeddings.hf.space/embed \
|
| 57 |
-H "Content-Type: application/json" \
|
| 58 |
+
-d '{"text": "your text", "model": "mixedbread-ai/mxbai-embed-large-v1"}'
|
| 59 |
```
|
| 60 |
|
| 61 |
2. **Gradio client** (handles queue automatically):
|
| 62 |
```python
|
| 63 |
from gradio_client import Client
|
| 64 |
client = Client("ipepe/nomic-embeddings")
|
| 65 |
+
result = client.predict("text to embed", "model-name", api_name="/predict")
|
| 66 |
```
|
| 67 |
|
| 68 |
## Deployment Notes
|
app.py
CHANGED
|
@@ -6,14 +6,52 @@ from fastapi import FastAPI
|
|
| 6 |
from fastapi.responses import JSONResponse
|
| 7 |
from sentence_transformers import SentenceTransformer
|
| 8 |
|
| 9 |
-
#
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
# Create FastAPI app
|
| 13 |
fastapi_app = FastAPI()
|
| 14 |
|
| 15 |
|
| 16 |
-
def embed(document: str):
|
|
|
|
|
|
|
|
|
|
| 17 |
return model.encode(document)
|
| 18 |
|
| 19 |
|
|
@@ -23,20 +61,28 @@ async def embed_text(data: Dict[str, Any]):
|
|
| 23 |
"""Direct API endpoint for text embedding without queue"""
|
| 24 |
try:
|
| 25 |
text = data.get("text", "")
|
|
|
|
|
|
|
| 26 |
if not text:
|
| 27 |
return JSONResponse(
|
| 28 |
status_code=400,
|
| 29 |
content={"error": "No text provided"}
|
| 30 |
)
|
| 31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
# Generate embedding
|
| 33 |
-
embedding =
|
| 34 |
|
| 35 |
return JSONResponse(
|
| 36 |
content={
|
| 37 |
"embedding": embedding.tolist(),
|
| 38 |
"dim": len(embedding),
|
| 39 |
-
"model":
|
| 40 |
}
|
| 41 |
)
|
| 42 |
except Exception as e:
|
|
@@ -46,9 +92,28 @@ async def embed_text(data: Dict[str, Any]):
|
|
| 46 |
)
|
| 47 |
|
| 48 |
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
# Create an input text box
|
| 54 |
text_input = gr.Textbox(label="Enter text to embed", placeholder="Type or paste your text here...")
|
|
@@ -60,27 +125,38 @@ with gr.Blocks(title="Nomic Text Embeddings") as app:
|
|
| 60 |
submit_btn = gr.Button("Generate Embedding", variant="primary")
|
| 61 |
|
| 62 |
# Handle both button click and text submission
|
| 63 |
-
submit_btn.click(embed, inputs=text_input, outputs=output, api_name="predict")
|
| 64 |
-
text_input.submit(embed, inputs=text_input, outputs=output)
|
| 65 |
|
| 66 |
# Add API usage guide
|
| 67 |
gr.Markdown("## API Usage")
|
| 68 |
gr.Markdown("""
|
| 69 |
You can use this API in two ways: via the direct FastAPI endpoint or through Gradio clients.
|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
### Direct API Endpoint (No Queue!)
|
| 72 |
```bash
|
|
|
|
| 73 |
curl -X POST https://ipepe-nomic-embeddings.hf.space/embed \
|
| 74 |
-H "Content-Type: application/json" \
|
| 75 |
-d '{"text": "Your text to embed goes here"}'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
```
|
| 77 |
|
| 78 |
Response format:
|
| 79 |
```json
|
| 80 |
{
|
| 81 |
"embedding": [0.123, -0.456, ...],
|
| 82 |
-
"dim":
|
| 83 |
-
"model": "
|
| 84 |
}
|
| 85 |
```
|
| 86 |
|
|
@@ -88,9 +164,17 @@ with gr.Blocks(title="Nomic Text Embeddings") as app:
|
|
| 88 |
```python
|
| 89 |
import requests
|
| 90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
response = requests.post(
|
| 92 |
"https://ipepe-nomic-embeddings.hf.space/embed",
|
| 93 |
-
json={
|
|
|
|
|
|
|
|
|
|
| 94 |
)
|
| 95 |
result = response.json()
|
| 96 |
embedding = result["embedding"]
|
|
@@ -103,22 +187,28 @@ with gr.Blocks(title="Nomic Text Embeddings") as app:
|
|
| 103 |
client = Client("ipepe/nomic-embeddings")
|
| 104 |
result = client.predict(
|
| 105 |
"Your text to embed goes here",
|
|
|
|
| 106 |
api_name="/predict"
|
| 107 |
)
|
| 108 |
print(result) # Returns the embedding array
|
| 109 |
```
|
| 110 |
|
| 111 |
-
###
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
""")
|
| 123 |
|
| 124 |
if __name__ == '__main__':
|
|
|
|
| 6 |
from fastapi.responses import JSONResponse
|
| 7 |
from sentence_transformers import SentenceTransformer
|
| 8 |
|
| 9 |
+
# Available models
|
| 10 |
+
MODELS = {
|
| 11 |
+
"nomic-ai/nomic-embed-text-v1.5": {"trust_remote_code": True},
|
| 12 |
+
"nomic-ai/nomic-embed-text-v1": {"trust_remote_code": True},
|
| 13 |
+
"mixedbread-ai/mxbai-embed-large-v1": {"trust_remote_code": False},
|
| 14 |
+
"BAAI/bge-m3": {"trust_remote_code": False},
|
| 15 |
+
"sentence-transformers/all-MiniLM-L6-v2": {"trust_remote_code": False},
|
| 16 |
+
"sentence-transformers/all-mpnet-base-v2": {"trust_remote_code": False},
|
| 17 |
+
"Snowflake/snowflake-arctic-embed-m": {"trust_remote_code": False},
|
| 18 |
+
"Snowflake/snowflake-arctic-embed-l": {"trust_remote_code": False},
|
| 19 |
+
"Snowflake/snowflake-arctic-embed-m-v2.0": {"trust_remote_code": False},
|
| 20 |
+
"BAAI/bge-large-en-v1.5": {"trust_remote_code": False},
|
| 21 |
+
"BAAI/bge-base-en-v1.5": {"trust_remote_code": False},
|
| 22 |
+
"BAAI/bge-small-en-v1.5": {"trust_remote_code": False},
|
| 23 |
+
"sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2": {"trust_remote_code": False},
|
| 24 |
+
"ibm-granite/granite-embedding-30m-english": {"trust_remote_code": False},
|
| 25 |
+
"ibm-granite/granite-embedding-278m-multilingual": {"trust_remote_code": False},
|
| 26 |
+
}
|
| 27 |
+
|
| 28 |
+
# Model cache
|
| 29 |
+
loaded_models = {}
|
| 30 |
+
current_model_name = "nomic-ai/nomic-embed-text-v1.5"
|
| 31 |
+
|
| 32 |
+
# Initialize default model
|
| 33 |
+
def load_model(model_name: str):
|
| 34 |
+
global loaded_models
|
| 35 |
+
if model_name not in loaded_models:
|
| 36 |
+
config = MODELS.get(model_name, {})
|
| 37 |
+
loaded_models[model_name] = SentenceTransformer(
|
| 38 |
+
model_name,
|
| 39 |
+
trust_remote_code=config.get("trust_remote_code", False),
|
| 40 |
+
device='cpu'
|
| 41 |
+
)
|
| 42 |
+
return loaded_models[model_name]
|
| 43 |
+
|
| 44 |
+
# Load default model
|
| 45 |
+
model = load_model(current_model_name)
|
| 46 |
|
| 47 |
# Create FastAPI app
|
| 48 |
fastapi_app = FastAPI()
|
| 49 |
|
| 50 |
|
| 51 |
+
def embed(document: str, model_name: str = None):
|
| 52 |
+
if model_name and model_name in MODELS:
|
| 53 |
+
selected_model = load_model(model_name)
|
| 54 |
+
return selected_model.encode(document)
|
| 55 |
return model.encode(document)
|
| 56 |
|
| 57 |
|
|
|
|
| 61 |
"""Direct API endpoint for text embedding without queue"""
|
| 62 |
try:
|
| 63 |
text = data.get("text", "")
|
| 64 |
+
model_name = data.get("model", current_model_name)
|
| 65 |
+
|
| 66 |
if not text:
|
| 67 |
return JSONResponse(
|
| 68 |
status_code=400,
|
| 69 |
content={"error": "No text provided"}
|
| 70 |
)
|
| 71 |
|
| 72 |
+
if model_name not in MODELS:
|
| 73 |
+
return JSONResponse(
|
| 74 |
+
status_code=400,
|
| 75 |
+
content={"error": f"Model '{model_name}' not supported. Available models: {list(MODELS.keys())}"}
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
# Generate embedding
|
| 79 |
+
embedding = embed(text, model_name)
|
| 80 |
|
| 81 |
return JSONResponse(
|
| 82 |
content={
|
| 83 |
"embedding": embedding.tolist(),
|
| 84 |
"dim": len(embedding),
|
| 85 |
+
"model": model_name
|
| 86 |
}
|
| 87 |
)
|
| 88 |
except Exception as e:
|
|
|
|
| 92 |
)
|
| 93 |
|
| 94 |
|
| 95 |
+
@fastapi_app.get("/models")
|
| 96 |
+
async def list_models():
|
| 97 |
+
"""List available embedding models"""
|
| 98 |
+
return JSONResponse(
|
| 99 |
+
content={
|
| 100 |
+
"models": list(MODELS.keys()),
|
| 101 |
+
"default": current_model_name
|
| 102 |
+
}
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
with gr.Blocks(title="Multi-Model Text Embeddings") as app:
|
| 107 |
+
gr.Markdown("# Multi-Model Text Embeddings")
|
| 108 |
+
gr.Markdown("Generate embeddings for your text using 15+ state-of-the-art embedding models from Nomic, BGE, Snowflake, IBM Granite, and more.")
|
| 109 |
+
|
| 110 |
+
# Model selector dropdown
|
| 111 |
+
model_dropdown = gr.Dropdown(
|
| 112 |
+
choices=list(MODELS.keys()),
|
| 113 |
+
value=current_model_name,
|
| 114 |
+
label="Select Embedding Model",
|
| 115 |
+
info="Choose the embedding model to use"
|
| 116 |
+
)
|
| 117 |
|
| 118 |
# Create an input text box
|
| 119 |
text_input = gr.Textbox(label="Enter text to embed", placeholder="Type or paste your text here...")
|
|
|
|
| 125 |
submit_btn = gr.Button("Generate Embedding", variant="primary")
|
| 126 |
|
| 127 |
# Handle both button click and text submission
|
| 128 |
+
submit_btn.click(embed, inputs=[text_input, model_dropdown], outputs=output, api_name="predict")
|
| 129 |
+
text_input.submit(embed, inputs=[text_input, model_dropdown], outputs=output)
|
| 130 |
|
| 131 |
# Add API usage guide
|
| 132 |
gr.Markdown("## API Usage")
|
| 133 |
gr.Markdown("""
|
| 134 |
You can use this API in two ways: via the direct FastAPI endpoint or through Gradio clients.
|
| 135 |
|
| 136 |
+
### List Available Models
|
| 137 |
+
```bash
|
| 138 |
+
curl https://ipepe-nomic-embeddings.hf.space/models
|
| 139 |
+
```
|
| 140 |
+
|
| 141 |
### Direct API Endpoint (No Queue!)
|
| 142 |
```bash
|
| 143 |
+
# Default model (nomic-ai/nomic-embed-text-v1.5)
|
| 144 |
curl -X POST https://ipepe-nomic-embeddings.hf.space/embed \
|
| 145 |
-H "Content-Type: application/json" \
|
| 146 |
-d '{"text": "Your text to embed goes here"}'
|
| 147 |
+
|
| 148 |
+
# With specific model
|
| 149 |
+
curl -X POST https://ipepe-nomic-embeddings.hf.space/embed \
|
| 150 |
+
-H "Content-Type: application/json" \
|
| 151 |
+
-d '{"text": "Your text to embed goes here", "model": "sentence-transformers/all-MiniLM-L6-v2"}'
|
| 152 |
```
|
| 153 |
|
| 154 |
Response format:
|
| 155 |
```json
|
| 156 |
{
|
| 157 |
"embedding": [0.123, -0.456, ...],
|
| 158 |
+
"dim": 384,
|
| 159 |
+
"model": "sentence-transformers/all-MiniLM-L6-v2"
|
| 160 |
}
|
| 161 |
```
|
| 162 |
|
|
|
|
| 164 |
```python
|
| 165 |
import requests
|
| 166 |
|
| 167 |
+
# List available models
|
| 168 |
+
models = requests.get("https://ipepe-nomic-embeddings.hf.space/models").json()
|
| 169 |
+
print(models["models"])
|
| 170 |
+
|
| 171 |
+
# Generate embedding with specific model
|
| 172 |
response = requests.post(
|
| 173 |
"https://ipepe-nomic-embeddings.hf.space/embed",
|
| 174 |
+
json={
|
| 175 |
+
"text": "Your text to embed goes here",
|
| 176 |
+
"model": "BAAI/bge-small-en-v1.5"
|
| 177 |
+
}
|
| 178 |
)
|
| 179 |
result = response.json()
|
| 180 |
embedding = result["embedding"]
|
|
|
|
| 187 |
client = Client("ipepe/nomic-embeddings")
|
| 188 |
result = client.predict(
|
| 189 |
"Your text to embed goes here",
|
| 190 |
+
"nomic-ai/nomic-embed-text-v1.5", # model selection
|
| 191 |
api_name="/predict"
|
| 192 |
)
|
| 193 |
print(result) # Returns the embedding array
|
| 194 |
```
|
| 195 |
|
| 196 |
+
### Available Models
|
| 197 |
+
- `nomic-ai/nomic-embed-text-v1.5` (default) - High-performing open embedding model with large token context
|
| 198 |
+
- `nomic-ai/nomic-embed-text-v1` - Previous version of Nomic embedding model
|
| 199 |
+
- `mixedbread-ai/mxbai-embed-large-v1` - State-of-the-art large embedding model from mixedbread.ai
|
| 200 |
+
- `BAAI/bge-m3` - Multi-functional, multi-lingual, multi-granularity embedding model
|
| 201 |
+
- `sentence-transformers/all-MiniLM-L6-v2` - Fast, small embedding model for general use
|
| 202 |
+
- `sentence-transformers/all-mpnet-base-v2` - Balanced performance embedding model
|
| 203 |
+
- `Snowflake/snowflake-arctic-embed-m` - Medium-sized Arctic embedding model
|
| 204 |
+
- `Snowflake/snowflake-arctic-embed-l` - Large Arctic embedding model
|
| 205 |
+
- `Snowflake/snowflake-arctic-embed-m-v2.0` - Latest Arctic embedding with multilingual support
|
| 206 |
+
- `BAAI/bge-large-en-v1.5` - Large BGE embedding model for English
|
| 207 |
+
- `BAAI/bge-base-en-v1.5` - Base BGE embedding model for English
|
| 208 |
+
- `BAAI/bge-small-en-v1.5` - Small BGE embedding model for English
|
| 209 |
+
- `sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2` - Multilingual paraphrase model
|
| 210 |
+
- `ibm-granite/granite-embedding-30m-english` - IBM Granite 30M English embedding model
|
| 211 |
+
- `ibm-granite/granite-embedding-278m-multilingual` - IBM Granite 278M multilingual embedding model
|
| 212 |
""")
|
| 213 |
|
| 214 |
if __name__ == '__main__':
|