Spaces:
Runtime error
Runtime error
| import os | |
| import json | |
| import numpy as np | |
| import webdataset as wds | |
| import pytorch_lightning as pl | |
| import torch | |
| from torch.utils.data import Dataset | |
| from torch.utils.data.distributed import DistributedSampler | |
| from PIL import Image | |
| from pathlib import Path | |
| from src.utils.train_util import instantiate_from_config | |
| class DataModuleFromConfig(pl.LightningDataModule): | |
| def __init__( | |
| self, | |
| batch_size=8, | |
| num_workers=4, | |
| train=None, | |
| validation=None, | |
| test=None, | |
| **kwargs, | |
| ): | |
| super().__init__() | |
| self.batch_size = batch_size | |
| self.num_workers = num_workers | |
| self.dataset_configs = dict() | |
| if train is not None: | |
| self.dataset_configs['train'] = train | |
| if validation is not None: | |
| self.dataset_configs['validation'] = validation | |
| if test is not None: | |
| self.dataset_configs['test'] = test | |
| def setup(self, stage): | |
| if stage in ['fit']: | |
| self.datasets = dict((k, instantiate_from_config(self.dataset_configs[k])) for k in self.dataset_configs) | |
| else: | |
| raise NotImplementedError | |
| def train_dataloader(self): | |
| sampler = DistributedSampler(self.datasets['train']) | |
| return wds.WebLoader(self.datasets['train'], batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False, sampler=sampler) | |
| def val_dataloader(self): | |
| sampler = DistributedSampler(self.datasets['validation']) | |
| return wds.WebLoader(self.datasets['validation'], batch_size=4, num_workers=self.num_workers, shuffle=False, sampler=sampler) | |
| def test_dataloader(self): | |
| return wds.WebLoader(self.datasets['test'], batch_size=self.batch_size, num_workers=self.num_workers, shuffle=False) | |
| class ObjaverseData(Dataset): | |
| def __init__(self, | |
| root_dir='objaverse/', | |
| meta_fname='valid_paths.json', | |
| image_dir='rendering_zero123plus', | |
| validation=False, | |
| ): | |
| self.root_dir = Path(root_dir) | |
| self.image_dir = image_dir | |
| with open(os.path.join(root_dir, meta_fname)) as f: | |
| lvis_dict = json.load(f) | |
| paths = [] | |
| for k in lvis_dict.keys(): | |
| paths.extend(lvis_dict[k]) | |
| self.paths = paths | |
| total_objects = len(self.paths) | |
| if validation: | |
| self.paths = self.paths[-16:] # used last 16 as validation | |
| else: | |
| self.paths = self.paths[:-16] | |
| print('============= length of dataset %d =============' % len(self.paths)) | |
| def __len__(self): | |
| return len(self.paths) | |
| def load_im(self, path, color): | |
| pil_img = Image.open(path) | |
| image = np.asarray(pil_img, dtype=np.float32) / 255. | |
| alpha = image[:, :, 3:] | |
| image = image[:, :, :3] * alpha + color * (1 - alpha) | |
| image = torch.from_numpy(image).permute(2, 0, 1).contiguous().float() | |
| alpha = torch.from_numpy(alpha).permute(2, 0, 1).contiguous().float() | |
| return image, alpha | |
| def __getitem__(self, index): | |
| while True: | |
| image_path = os.path.join(self.root_dir, self.image_dir, self.paths[index]) | |
| '''background color, default: white''' | |
| bkg_color = [1., 1., 1.] | |
| img_list = [] | |
| try: | |
| for idx in range(7): | |
| img, alpha = self.load_im(os.path.join(image_path, '%03d.png' % idx), bkg_color) | |
| img_list.append(img) | |
| except Exception as e: | |
| print(e) | |
| index = np.random.randint(0, len(self.paths)) | |
| continue | |
| break | |
| imgs = torch.stack(img_list, dim=0).float() | |
| data = { | |
| 'cond_imgs': imgs[0], # (3, H, W) | |
| 'target_imgs': imgs[1:], # (6, 3, H, W) | |
| } | |
| return data | |