from sklearn.metrics import roc_auc_score, roc_curve

import datetime
import os
import umap
import numpy as np

import matplotlib.pyplot as plt
import pandas as pd
import pickle
import json

from xgboost import XGBClassifier, XGBRegressor
import xgboost as xgb
from sklearn.metrics import roc_auc_score, mean_squared_error
import xgboost as xgb
from sklearn.svm import SVR
from sklearn.linear_model import LinearRegression
from sklearn.kernel_ridge import KernelRidge
import json
from sklearn.compose import TransformedTargetRegressor
from sklearn.preprocessing import MinMaxScaler


import torch
from transformers import AutoTokenizer, AutoModel

from .selfies_model.load import SELFIES as bart
from .mhg_model import load as mhg
from .smi_ted.smi_ted_light.load import load_smi_ted

datasets = {}
models = {}
downstream_models ={}


def avail_models_data():
    global datasets
    global models

    datasets = [{"Dataset": "hiv", "Input": "smiles", "Output": "HIV_active", "Path": "data/hiv", "Timestamp": "2024-06-26 11:27:37"},
  {"Dataset": "esol", "Input": "smiles", "Output": "ESOL predicted log solubility in mols per litre", "Path": "data/esol", "Timestamp": "2024-06-26 11:31:46"},
  {"Dataset": "freesolv", "Input": "smiles", "Output": "expt", "Path": "data/freesolv", "Timestamp": "2024-06-26 11:33:47"},
  {"Dataset": "lipo", "Input": "smiles", "Output": "y", "Path": "data/lipo", "Timestamp": "2024-06-26 11:34:37"},
  {"Dataset": "bace", "Input": "smiles", "Output": "Class", "Path": "data/bace", "Timestamp": "2024-06-26 11:36:40"},
  {"Dataset": "bbbp", "Input": "smiles", "Output": "p_np", "Path": "data/bbbp", "Timestamp": "2024-06-26 11:39:23"},
  {"Dataset": "clintox", "Input": "smiles", "Output": "CT_TOX", "Path": "data/clintox", "Timestamp": "2024-06-26 11:42:43"}]


    models = [{"Name": "bart","Model Name": "SELFIES-TED","Description": "BART model for string based SELFIES modality", "Timestamp": "2024-06-21 12:32:20"},
  {"Name": "mol-xl","Model Name": "Molformer", "Description": "MolFormer model for string based SMILES modality", "Timestamp": "2024-06-21 12:35:56"},
  {"Name": "mhg", "Model Name": "MHG-GED","Description": "Molecular hypergraph model", "Timestamp": "2024-07-10 00:09:42"},
  {"Name": "smi-ted", "Model Name": "SMI-TED","Description": "SMILES based encoder decoder model", "Timestamp": "2024-07-10 00:09:42"}]


def avail_models(raw=False):
    global models

    models = [{"Name": "smi-ted", "Model Name": "SMI-TED","Description": "SMILES based encoder decoder model"},
              {"Name": "bart","Model Name": "SELFIES-TED","Description": "BART model for string based SELFIES modality"},
              {"Name": "mol-xl","Model Name": "Molformer", "Description": "MolFormer model for string based SMILES modality"},
              {"Name": "mhg", "Model Name": "MHG-GED","Description": "Molecular hypergraph model"},
  ]



    if raw: return models
    else:
        return pd.DataFrame(models).drop('Name', axis=1)

    return models

def avail_downstream_models():
    global downstream_models

    with open("downstream_models.json", "r") as outfile:
        downstream_models = json.load(outfile)
    return downstream_models

def avail_datasets():
    global datasets

    datasets = [{"Dataset": "hiv", "Input": "smiles", "Output": "HIV_active", "Path": "data/hiv",
                 "Timestamp": "2024-06-26 11:27:37"},
                {"Dataset": "esol", "Input": "smiles", "Output": "ESOL predicted log solubility in mols per litre",
                 "Path": "data/esol", "Timestamp": "2024-06-26 11:31:46"},
                {"Dataset": "freesolv", "Input": "smiles", "Output": "expt", "Path": "data/freesolv",
                 "Timestamp": "2024-06-26 11:33:47"},
                {"Dataset": "lipo", "Input": "smiles", "Output": "y", "Path": "data/lipo",
                 "Timestamp": "2024-06-26 11:34:37"},
                {"Dataset": "bace", "Input": "smiles", "Output": "Class", "Path": "data/bace",
                 "Timestamp": "2024-06-26 11:36:40"},
                {"Dataset": "bbbp", "Input": "smiles", "Output": "p_np", "Path": "data/bbbp",
                 "Timestamp": "2024-06-26 11:39:23"},
                {"Dataset": "clintox", "Input": "smiles", "Output": "CT_TOX", "Path": "data/clintox",
                 "Timestamp": "2024-06-26 11:42:43"}]

    return datasets

def reset():

    """datasets = {"esol": ["smiles", "ESOL predicted log solubility in mols per litre", "data/esol", "2024-06-26 11:36:46.509324"],
           "freesolv": ["smiles", "expt", "data/freesolv", "2024-06-26 11:37:37.393273"],
           "lipo": ["smiles", "y", "data/lipo", "2024-06-26 11:37:37.393273"],
           "hiv": ["smiles", "HIV_active", "data/hiv",  "2024-06-26 11:37:37.393273"],
           "bace": ["smiles", "Class", "data/bace", "2024-06-26 11:38:40.058354"],
           "bbbp": ["smiles", "p_np", "data/bbbp","2024-06-26 11:38:40.058354"],
           "clintox": ["smiles", "CT_TOX", "data/clintox","2024-06-26 11:38:40.058354"],
           "sider": ["smiles","1:", "data/sider","2024-06-26 11:38:40.058354"],
           "tox21": ["smiles",":-2", "data/tox21","2024-06-26 11:38:40.058354"]
           }"""

    datasets = [
      {"Dataset": "hiv", "Input": "smiles", "Output": "HIV_active", "Path": "data/hiv", "Timestamp": "2024-06-26 11:27:37"},
      {"Dataset": "esol", "Input": "smiles", "Output": "ESOL predicted log solubility in mols per litre", "Path": "data/esol", "Timestamp": "2024-06-26 11:31:46"},
      {"Dataset": "freesolv", "Input": "smiles", "Output": "expt", "Path": "data/freesolv", "Timestamp": "2024-06-26 11:33:47"},
      {"Dataset": "lipo", "Input": "smiles", "Output": "y", "Path": "data/lipo", "Timestamp": "2024-06-26 11:34:37"},
      {"Dataset": "bace", "Input": "smiles", "Output": "Class", "Path": "data/bace", "Timestamp": "2024-06-26 11:36:40"},
      {"Dataset": "bbbp", "Input": "smiles", "Output": "p_np", "Path": "data/bbbp", "Timestamp": "2024-06-26 11:39:23"},
      {"Dataset": "clintox", "Input": "smiles", "Output": "CT_TOX", "Path": "data/clintox", "Timestamp": "2024-06-26 11:42:43"},
      #{"Dataset": "sider", "Input": "smiles", "Output": "1:", "path": "data/sider", "Timestamp": "2024-06-26 11:38:40.058354"},
      #{"Dataset": "tox21", "Input": "smiles", "Output": ":-2", "path": "data/tox21", "Timestamp": "2024-06-26 11:38:40.058354"}
    ]

    models = [{"Name": "bart", "Description": "BART model for string based SELFIES modality",
      "Timestamp": "2024-06-21 12:32:20"},
     {"Name": "mol-xl", "Description": "MolFormer model for string based SMILES modality",
      "Timestamp": "2024-06-21 12:35:56"},
     {"Name": "mhg", "Description": "MHG", "Timestamp": "2024-07-10 00:09:42"},
     {"Name": "spec-gru", "Description": "Spectrum modality with GRU", "Timestamp": "2024-07-10 00:09:42"},
     {"Name": "spec-lstm", "Description": "Spectrum modality with LSTM", "Timestamp": "2024-07-10 00:09:54"},
     {"Name": "3d-vae", "Description": "VAE model for 3D atom positions", "Timestamp": "2024-07-10 00:10:08"}]


    downstream_models = [
        {"Name": "XGBClassifier", "Description": "XG Boost Classifier",
         "Timestamp": "2024-06-21 12:31:20"},
        {"Name": "XGBRegressor", "Description": "XG Boost Regressor",
         "Timestamp": "2024-06-21 12:32:56"},
        {"Name": "2-FNN", "Description": "A two layer feedforward network",
         "Timestamp": "2024-06-24 14:34:16"},
        {"Name": "3-FNN", "Description": "A three layer feedforward network",
         "Timestamp": "2024-06-24 14:38:37"},
    ]

    with open("datasets.json", "w") as outfile:
        json.dump(datasets, outfile)

    with open("models.json", "w") as outfile:
        json.dump(models, outfile)

    with open("downstream_models.json", "w") as outfile:
        json.dump(downstream_models, outfile)

def update_data_list(list_data):
    #datasets[list_data[0]] = list_data[1:]

    with open("datasets.json", "w") as outfile:
        json.dump(datasets, outfile)

    avail_models_data()

def update_model_list(list_model):
    #models[list_model[0]] = list_model[1]

    with open("models.json", "w") as outfile:
        json.dump(list_model, outfile)

    avail_models_data()

def update_downstream_model_list(list_model):
    #models[list_model[0]] = list_model[1]

    with open("downstream_models.json", "w") as outfile:
        json.dump(list_model, outfile)

    avail_models_data()

avail_models_data()

def get_representation(train_data,test_data,model_type, return_tensor=True):
    alias = {"MHG-GED": "mhg", "SELFIES-TED": "bart", "MolFormer": "mol-xl", "Molformer": "mol-xl", "SMI-TED": "smi-ted"}
    if model_type in alias.keys():
        model_type = alias[model_type]

    if model_type == "mhg":
        model = mhg.load("models/mhg_model/pickles/mhggnn_pretrained_model_0724_2023.pickle")
        with torch.no_grad():
            train_emb = model.encode(train_data)
            x_batch = torch.stack(train_emb)

            test_emb = model.encode(test_data)
            x_batch_test = torch.stack(test_emb)
        if not return_tensor:
            x_batch = pd.DataFrame(x_batch)
            x_batch_test = pd.DataFrame(x_batch_test)



    elif model_type == "bart":
        model = bart()
        model.load()
        x_batch = model.encode(train_data, return_tensor=return_tensor)
        x_batch_test = model.encode(test_data, return_tensor=return_tensor)

    elif model_type == "smi-ted":
        model = load_smi_ted(folder='./models/smi_ted/smi_ted_light', ckpt_filename='smi-ted-Light_40.pt')
        with torch.no_grad():
            x_batch = model.encode(train_data, return_torch=return_tensor)
            x_batch_test = model.encode(test_data, return_torch=return_tensor)

    elif model_type == "mol-xl":
        model = AutoModel.from_pretrained("ibm/MoLFormer-XL-both-10pct", deterministic_eval=True,
                                          trust_remote_code=True)
        tokenizer = AutoTokenizer.from_pretrained("ibm/MoLFormer-XL-both-10pct", trust_remote_code=True)

        if type(train_data) == list:
            inputs = tokenizer(train_data, padding=True, return_tensors="pt")
        else:
            inputs = tokenizer(list(train_data.values), padding=True, return_tensors="pt")

        with torch.no_grad():
            outputs = model(**inputs)

        x_batch = outputs.pooler_output

        if type(test_data) == list:
            inputs = tokenizer(test_data, padding=True, return_tensors="pt")
        else:
            inputs = tokenizer(list(test_data.values), padding=True, return_tensors="pt")

        with torch.no_grad():
            outputs = model(**inputs)

        x_batch_test = outputs.pooler_output

        if not return_tensor:
            x_batch = pd.DataFrame(x_batch)
            x_batch_test = pd.DataFrame(x_batch_test)


    return x_batch, x_batch_test

def single_modal(model,dataset, downstream_model,params):
    print(model)
    alias = {"MHG-GED":"mhg", "SELFIES-TED": "bart", "MolFormer":"mol-xl", "SMI-TED": "smi-ted"}
    data = avail_models(raw=True)
    df = pd.DataFrame(data)
    print(list(df["Name"].values))
    if alias[model] in list(df["Name"].values):
        if model in alias.keys():
            model_type = alias[model]
        else:
            model_type = model
    else:
        print("Model not available")
        return

    data = avail_datasets()
    df = pd.DataFrame(data)
    print(list(df["Dataset"].values))

    if dataset in list(df["Dataset"].values):
        task = dataset
        with open(f"./representation/{task}_{model_type}.pkl", "rb") as f1:
            x_batch, y_batch, x_batch_test, y_batch_test = pickle.load(f1)
        print(f" Representation loaded successfully")
    else:

        print("Custom Dataset")
        #return
        components = dataset.split(",")
        train_data = pd.read_csv(components[0])[components[2]]
        test_data = pd.read_csv(components[1])[components[2]]

        y_batch = pd.read_csv(components[0])[components[3]]
        y_batch_test = pd.read_csv(components[1])[components[3]]


        x_batch,  x_batch_test = get_representation(train_data,test_data,model_type)



        print(f" Representation loaded successfully")





    print(f" Calculating ROC AUC Score ...")

    if downstream_model == "XGBClassifier":
        xgb_predict_concat = XGBClassifier(**params) # n_estimators=5000, learning_rate=0.01, max_depth=10
        xgb_predict_concat.fit(x_batch, y_batch)

        y_prob = xgb_predict_concat.predict_proba(x_batch_test)[:, 1]

        roc_auc = roc_auc_score(y_batch_test, y_prob)
        fpr, tpr, _ = roc_curve(y_batch_test, y_prob)
        print(f"ROC-AUC Score: {roc_auc:.4f}")

        try:
            with open(f"./plot_emb/{task}_{model_type}.pkl", "rb") as f1:
                class_0,class_1 = pickle.load(f1)
        except:
            print("Generating latent plots")
            reducer = umap.UMAP(metric='euclidean', n_neighbors=10, n_components=2, low_memory=True, min_dist=0.1,
                                verbose=False)
            n_samples = np.minimum(1000, len(x_batch))
            features_umap = reducer.fit_transform(x_batch[:n_samples])
            try:x = y_batch.values[:n_samples]
            except: x = y_batch[:n_samples]
            index_0 = [index for index in range(len(x)) if x[index] == 0]
            index_1 = [index for index in range(len(x)) if x[index] == 1]

            class_0 = features_umap[index_0]
            class_1 = features_umap[index_1]
            print("Generating latent plots : Done")

        #vizualize(roc_auc,fpr, tpr, x_batch, y_batch )

        result = f"ROC-AUC Score: {roc_auc:.4f}"

        return result, roc_auc,fpr, tpr, class_0, class_1

    elif downstream_model == "DefaultClassifier":
        xgb_predict_concat = XGBClassifier() # n_estimators=5000, learning_rate=0.01, max_depth=10
        xgb_predict_concat.fit(x_batch, y_batch)

        y_prob = xgb_predict_concat.predict_proba(x_batch_test)[:, 1]

        roc_auc = roc_auc_score(y_batch_test, y_prob)
        fpr, tpr, _ = roc_curve(y_batch_test, y_prob)
        print(f"ROC-AUC Score: {roc_auc:.4f}")

        try:
            with open(f"./plot_emb/{task}_{model_type}.pkl", "rb") as f1:
                class_0,class_1 = pickle.load(f1)
        except:
            print("Generating latent plots")
            reducer = umap.UMAP(metric='euclidean', n_neighbors=  10, n_components=2, low_memory=True, min_dist=0.1, verbose=False)
            n_samples = np.minimum(1000,len(x_batch))
            features_umap = reducer.fit_transform(x_batch[:n_samples])
            try:x = y_batch.values[:n_samples]
            except:x = y_batch[:n_samples]
            index_0 = [index for index in range(len(x)) if x[index] == 0]
            index_1 = [index for index in range(len(x)) if x[index] == 1]

            class_0 = features_umap[index_0]
            class_1 = features_umap[index_1]
            print("Generating latent plots : Done")

        #vizualize(roc_auc,fpr, tpr, x_batch, y_batch )

        result = f"ROC-AUC Score: {roc_auc:.4f}"

        return result, roc_auc,fpr, tpr, class_0, class_1

    elif downstream_model == "SVR":
        regressor = SVR(**params)
        model = TransformedTargetRegressor(regressor= regressor,
                                                transformer = MinMaxScaler(feature_range=(-1, 1))
                                                ).fit(x_batch,y_batch)

        y_prob = model.predict(x_batch_test)
        RMSE_score = np.sqrt(mean_squared_error(y_batch_test, y_prob))

        print(f"RMSE Score: {RMSE_score:.4f}")
        result = f"RMSE Score: {RMSE_score:.4f}"

        print("Generating latent plots")
        reducer = umap.UMAP(metric='euclidean', n_neighbors=10, n_components=2, low_memory=True, min_dist=0.1,
                            verbose=False)
        n_samples = np.minimum(1000, len(x_batch))
        features_umap = reducer.fit_transform(x_batch[:n_samples])
        try:x = y_batch.values[:n_samples]
        except:x = y_batch[:n_samples]
        #index_0 = [index for index in range(len(x)) if x[index] == 0]
        #index_1 = [index for index in range(len(x)) if x[index] == 1]

        class_0 = features_umap#[index_0]
        class_1 = features_umap#[index_1]
        print("Generating latent plots : Done")

        return result, RMSE_score,y_batch_test, y_prob, class_0, class_1

    elif downstream_model == "Kernel Ridge":
        regressor = KernelRidge(**params)
        model = TransformedTargetRegressor(regressor=regressor,
                                           transformer=MinMaxScaler(feature_range=(-1, 1))
                                           ).fit(x_batch, y_batch)

        y_prob = model.predict(x_batch_test)
        RMSE_score = np.sqrt(mean_squared_error(y_batch_test, y_prob))

        print(f"RMSE Score: {RMSE_score:.4f}")
        result = f"RMSE Score: {RMSE_score:.4f}"

        print("Generating latent plots")
        reducer = umap.UMAP(metric='euclidean', n_neighbors=10, n_components=2, low_memory=True, min_dist=0.1,
                            verbose=False)
        n_samples = np.minimum(1000, len(x_batch))
        features_umap = reducer.fit_transform(x_batch[:n_samples])
        try:x = y_batch.values[:n_samples]
        except:x = y_batch[:n_samples]
        # index_0 = [index for index in range(len(x)) if x[index] == 0]
        # index_1 = [index for index in range(len(x)) if x[index] == 1]

        class_0 = features_umap#[index_0]
        class_1 = features_umap#[index_1]
        print("Generating latent plots : Done")

        return result, RMSE_score, y_batch_test, y_prob, class_0, class_1


    elif downstream_model == "Linear Regression":
        regressor = LinearRegression(**params)
        model = TransformedTargetRegressor(regressor=regressor,
                                           transformer=MinMaxScaler(feature_range=(-1, 1))
                                           ).fit(x_batch, y_batch)

        y_prob = model.predict(x_batch_test)
        RMSE_score = np.sqrt(mean_squared_error(y_batch_test, y_prob))

        print(f"RMSE Score: {RMSE_score:.4f}")
        result = f"RMSE Score: {RMSE_score:.4f}"

        print("Generating latent plots")
        reducer = umap.UMAP(metric='euclidean', n_neighbors=10, n_components=2, low_memory=True, min_dist=0.1,
                            verbose=False)
        n_samples = np.minimum(1000, len(x_batch))
        features_umap = reducer.fit_transform(x_batch[:n_samples])
        try:x = y_batch.values[:n_samples]
        except:x = y_batch[:n_samples]
        # index_0 = [index for index in range(len(x)) if x[index] == 0]
        # index_1 = [index for index in range(len(x)) if x[index] == 1]

        class_0 = features_umap#[index_0]
        class_1 = features_umap#[index_1]
        print("Generating latent plots : Done")

        return result, RMSE_score, y_batch_test, y_prob, class_0, class_1


    elif downstream_model == "DefaultRegressor":
        regressor = SVR(kernel="rbf", degree=3, C=5, gamma="scale", epsilon=0.01)
        model = TransformedTargetRegressor(regressor=regressor,
                                           transformer=MinMaxScaler(feature_range=(-1, 1))
                                           ).fit(x_batch, y_batch)

        y_prob = model.predict(x_batch_test)
        RMSE_score = np.sqrt(mean_squared_error(y_batch_test, y_prob))

        print(f"RMSE Score: {RMSE_score:.4f}")
        result = f"RMSE Score: {RMSE_score:.4f}"

        print("Generating latent plots")
        reducer = umap.UMAP(metric='euclidean', n_neighbors=10, n_components=2, low_memory=True, min_dist=0.1,
                            verbose=False)
        n_samples = np.minimum(1000, len(x_batch))
        features_umap = reducer.fit_transform(x_batch[:n_samples])
        try:x = y_batch.values[:n_samples]
        except:x = y_batch[:n_samples]
        # index_0 = [index for index in range(len(x)) if x[index] == 0]
        # index_1 = [index for index in range(len(x)) if x[index] == 1]

        class_0 = features_umap#[index_0]
        class_1 = features_umap#[index_1]
        print("Generating latent plots : Done")

        return result, RMSE_score, y_batch_test, y_prob, class_0, class_1


def multi_modal(model_list,dataset, downstream_model,params):
    print(model_list)
    data = avail_datasets()
    df = pd.DataFrame(data)
    list(df["Dataset"].values)

    if dataset in list(df["Dataset"].values):
        task = dataset
        predefined = True
    else:
        predefined = False
        components = dataset.split(",")
        train_data = pd.read_csv(components[0])[components[2]]
        test_data = pd.read_csv(components[1])[components[2]]

        y_batch = pd.read_csv(components[0])[components[3]]
        y_batch_test = pd.read_csv(components[1])[components[3]]

        print("Custom Dataset loaded")


    data = avail_models(raw=True)
    df = pd.DataFrame(data)
    list(df["Name"].values)

    alias = {"MHG-GED":"mhg", "SELFIES-TED": "bart", "MolFormer":"mol-xl", "SMI-TED":"smi-ted"}
    #if set(model_list).issubset(list(df["Name"].values)):
    if set(model_list).issubset(list(alias.keys())):
        for i, model in enumerate(model_list):
            if model in alias.keys():
                model_type = alias[model]
            else:
                model_type = model

            if i == 0:
                if predefined:
                    with open(f"./representation/{task}_{model_type}.pkl", "rb") as f1:
                        x_batch, y_batch, x_batch_test, y_batch_test = pickle.load(f1)
                    print(f" Loaded representation/{task}_{model_type}.pkl")
                else:
                    x_batch, x_batch_test = get_representation(train_data, test_data, model_type)
                    x_batch = pd.DataFrame(x_batch)
                    x_batch_test = pd.DataFrame(x_batch_test)

            else:
                if predefined:
                    with open(f"./representation/{task}_{model_type}.pkl", "rb") as f1:
                        x_batch_1, y_batch_1, x_batch_test_1, y_batch_test_1 = pickle.load(f1)
                        print(f" Loaded representation/{task}_{model_type}.pkl")
                else:
                    x_batch_1, x_batch_test_1 = get_representation(train_data, test_data, model_type)
                    x_batch_1 = pd.DataFrame(x_batch_1)
                    x_batch_test_1 = pd.DataFrame(x_batch_test_1)

                x_batch = pd.concat([x_batch, x_batch_1], axis=1)
                x_batch_test = pd.concat([x_batch_test, x_batch_test_1], axis=1)


    else:
        print("Model not available")
        return

    num_columns = x_batch_test.shape[1]
    x_batch_test.columns = [f'{i + 1}' for i in range(num_columns)]

    num_columns = x_batch.shape[1]
    x_batch.columns = [f'{i + 1}' for i in range(num_columns)]


    print(f"Representations loaded successfully")
    try:
        with open(f"./plot_emb/{task}_multi.pkl", "rb") as f1:
            class_0, class_1 = pickle.load(f1)
    except:
        print("Generating latent plots")
        reducer = umap.UMAP(metric='euclidean', n_neighbors=10, n_components=2, low_memory=True, min_dist=0.1,
                            verbose=False)
        n_samples = np.minimum(1000, len(x_batch))
        features_umap = reducer.fit_transform(x_batch[:n_samples])

        if "Classifier" in downstream_model:
            try:x = y_batch.values[:n_samples]
            except:x = y_batch[:n_samples]
            index_0 = [index for index in range(len(x)) if x[index] == 0]
            index_1 = [index for index in range(len(x)) if x[index] == 1]

            class_0 = features_umap[index_0]
            class_1 = features_umap[index_1]

        else:
            class_0 = features_umap
            class_1 = features_umap

        print("Generating latent plots : Done")

    print(f" Calculating ROC AUC Score ...")


    if downstream_model == "XGBClassifier":
        xgb_predict_concat = XGBClassifier(**params)#n_estimators=5000, learning_rate=0.01, max_depth=10)
        xgb_predict_concat.fit(x_batch, y_batch)

        y_prob = xgb_predict_concat.predict_proba(x_batch_test)[:, 1]


        roc_auc = roc_auc_score(y_batch_test, y_prob)
        fpr, tpr, _ = roc_curve(y_batch_test, y_prob)
        print(f"ROC-AUC Score: {roc_auc:.4f}")

        #vizualize(roc_auc,fpr, tpr, x_batch, y_batch )

        #vizualize(x_batch_test, y_batch_test)
        print(f"ROC-AUC Score: {roc_auc:.4f}")
        result = f"ROC-AUC Score: {roc_auc:.4f}"

        return result, roc_auc,fpr, tpr, class_0, class_1

    elif downstream_model == "DefaultClassifier":
        xgb_predict_concat = XGBClassifier()#n_estimators=5000, learning_rate=0.01, max_depth=10)
        xgb_predict_concat.fit(x_batch, y_batch)

        y_prob = xgb_predict_concat.predict_proba(x_batch_test)[:, 1]


        roc_auc = roc_auc_score(y_batch_test, y_prob)
        fpr, tpr, _ = roc_curve(y_batch_test, y_prob)
        print(f"ROC-AUC Score: {roc_auc:.4f}")

        #vizualize(roc_auc,fpr, tpr, x_batch, y_batch )

        #vizualize(x_batch_test, y_batch_test)
        print(f"ROC-AUC Score: {roc_auc:.4f}")
        result = f"ROC-AUC Score: {roc_auc:.4f}"

        return result, roc_auc,fpr, tpr, class_0, class_1

    elif downstream_model == "SVR":
        regressor = SVR(**params)
        model = TransformedTargetRegressor(regressor= regressor,
                                                transformer = MinMaxScaler(feature_range=(-1, 1))
                                                ).fit(x_batch,y_batch)

        y_prob = model.predict(x_batch_test)
        RMSE_score = np.sqrt(mean_squared_error(y_batch_test, y_prob))

        print(f"RMSE Score: {RMSE_score:.4f}")
        result = f"RMSE Score: {RMSE_score:.4f}"

        return result, RMSE_score,y_batch_test, y_prob, class_0, class_1

    elif downstream_model == "Linear Regression":
        regressor = LinearRegression(**params)
        model = TransformedTargetRegressor(regressor=regressor,
                                           transformer=MinMaxScaler(feature_range=(-1, 1))
                                           ).fit(x_batch, y_batch)

        y_prob = model.predict(x_batch_test)
        RMSE_score = np.sqrt(mean_squared_error(y_batch_test, y_prob))

        print(f"RMSE Score: {RMSE_score:.4f}")
        result = f"RMSE Score: {RMSE_score:.4f}"

        return result, RMSE_score, y_batch_test, y_prob, class_0, class_1

    elif downstream_model == "Kernel Ridge":
        regressor = KernelRidge(**params)
        model = TransformedTargetRegressor(regressor=regressor,
                                           transformer=MinMaxScaler(feature_range=(-1, 1))
                                           ).fit(x_batch, y_batch)

        y_prob = model.predict(x_batch_test)
        RMSE_score = np.sqrt(mean_squared_error(y_batch_test, y_prob))

        print(f"RMSE Score: {RMSE_score:.4f}")
        result = f"RMSE Score: {RMSE_score:.4f}"

        return result, RMSE_score, y_batch_test, y_prob, class_0, class_1

    elif downstream_model == "DefaultRegressor":
        regressor = SVR(kernel="rbf", degree=3, C=5, gamma="scale", epsilon=0.01)
        model = TransformedTargetRegressor(regressor=regressor,
                                           transformer=MinMaxScaler(feature_range=(-1, 1))
                                           ).fit(x_batch, y_batch)

        y_prob = model.predict(x_batch_test)
        RMSE_score = np.sqrt(mean_squared_error(y_batch_test, y_prob))

        print(f"RMSE Score: {RMSE_score:.4f}")
        result = f"RMSE Score: {RMSE_score:.4f}"

        return result, RMSE_score, y_batch_test, y_prob, class_0, class_1