|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
PLEASE NOTE THIS IMPLEMENTATION INCLUDES THE ORIGINAL SOURCE CODE (AND SOME ADAPTATIONS) |
|
OF THE MHG IMPLEMENTATION OF HIROSHI KAJINO AT IBM TRL ALREADY PUBLICLY AVAILABLE. |
|
THIS MIGHT INFLUENCE THE DECISION OF THE FINAL LICENSE SO CAREFUL CHECK NEEDS BE DONE. |
|
""" |
|
|
|
""" Title """ |
|
|
|
__author__ = "Hiroshi Kajino <KAJINO@jp.ibm.com>" |
|
__copyright__ = "(c) Copyright IBM Corp. 2018" |
|
__version__ = "0.1" |
|
__date__ = "Aug 9 2018" |
|
|
|
|
|
import abc |
|
import numpy as np |
|
import torch |
|
from torch import nn |
|
|
|
|
|
class DecoderBase(nn.Module): |
|
|
|
def __init__(self): |
|
super().__init__() |
|
self.hidden_dict = {} |
|
|
|
@abc.abstractmethod |
|
def forward_one_step(self, tgt_emb_in): |
|
''' one-step forward model |
|
|
|
Parameters |
|
---------- |
|
tgt_emb_in : Tensor, shape (batch_size, input_dim) |
|
|
|
Returns |
|
------- |
|
Tensor, shape (batch_size, hidden_dim) |
|
''' |
|
tgt_emb_out = None |
|
return tgt_emb_out |
|
|
|
@abc.abstractmethod |
|
def init_hidden(self): |
|
''' initialize the hidden states |
|
''' |
|
pass |
|
|
|
@abc.abstractmethod |
|
def feed_hidden(self, hidden_dict_0): |
|
for each_hidden in self.hidden_dict.keys(): |
|
self.hidden_dict[each_hidden][0] = hidden_dict_0[each_hidden] |
|
|
|
|
|
class GRUDecoder(DecoderBase): |
|
|
|
def __init__(self, input_dim: int, hidden_dim: int, num_layers: int, |
|
dropout: float, batch_size: int, use_gpu: bool, |
|
no_dropout=False): |
|
super().__init__() |
|
self.input_dim = input_dim |
|
self.hidden_dim = hidden_dim |
|
self.num_layers = num_layers |
|
self.dropout = dropout |
|
self.batch_size = batch_size |
|
self.use_gpu = use_gpu |
|
self.model = nn.GRU(input_size=self.input_dim, |
|
hidden_size=self.hidden_dim, |
|
num_layers=self.num_layers, |
|
batch_first=True, |
|
bidirectional=False, |
|
dropout=self.dropout if not no_dropout else 0 |
|
) |
|
if self.use_gpu: |
|
self.model.cuda() |
|
self.init_hidden() |
|
|
|
def init_hidden(self): |
|
self.hidden_dict['h'] = torch.zeros((self.num_layers, |
|
self.batch_size, |
|
self.hidden_dim), |
|
requires_grad=False) |
|
if self.use_gpu: |
|
self.hidden_dict['h'] = self.hidden_dict['h'].cuda() |
|
|
|
def forward_one_step(self, tgt_emb_in): |
|
''' one-step forward model |
|
|
|
Parameters |
|
---------- |
|
tgt_emb_in : Tensor, shape (batch_size, input_dim) |
|
|
|
Returns |
|
------- |
|
Tensor, shape (batch_size, hidden_dim) |
|
''' |
|
tgt_emb_out, self.hidden_dict['h'] \ |
|
= self.model(tgt_emb_in.view(self.batch_size, 1, -1), |
|
self.hidden_dict['h']) |
|
return tgt_emb_out |
|
|
|
|
|
class LSTMDecoder(DecoderBase): |
|
|
|
def __init__(self, input_dim: int, hidden_dim: int, num_layers: int, |
|
dropout: float, batch_size: int, use_gpu: bool, |
|
no_dropout=False): |
|
super().__init__() |
|
self.input_dim = input_dim |
|
self.hidden_dim = hidden_dim |
|
self.num_layers = num_layers |
|
self.dropout = dropout |
|
self.batch_size = batch_size |
|
self.use_gpu = use_gpu |
|
self.model = nn.LSTM(input_size=self.input_dim, |
|
hidden_size=self.hidden_dim, |
|
num_layers=self.num_layers, |
|
batch_first=True, |
|
bidirectional=False, |
|
dropout=self.dropout if not no_dropout else 0) |
|
if self.use_gpu: |
|
self.model.cuda() |
|
self.init_hidden() |
|
|
|
def init_hidden(self): |
|
self.hidden_dict['h'] = torch.zeros((self.num_layers, |
|
self.batch_size, |
|
self.hidden_dim), |
|
requires_grad=False) |
|
self.hidden_dict['c'] = torch.zeros((self.num_layers, |
|
self.batch_size, |
|
self.hidden_dim), |
|
requires_grad=False) |
|
if self.use_gpu: |
|
for each_hidden in self.hidden_dict.keys(): |
|
self.hidden_dict[each_hidden] = self.hidden_dict[each_hidden].cuda() |
|
|
|
def forward_one_step(self, tgt_emb_in): |
|
''' one-step forward model |
|
|
|
Parameters |
|
---------- |
|
tgt_emb_in : Tensor, shape (batch_size, input_dim) |
|
|
|
Returns |
|
------- |
|
Tensor, shape (batch_size, hidden_dim) |
|
''' |
|
tgt_hidden_out, self.hidden_dict['h'], self.hidden_dict['c'] \ |
|
= self.model(tgt_emb_in.view(self.batch_size, 1, -1), |
|
self.hidden_dict['h'], self.hidden_dict['c']) |
|
return tgt_hidden_out |
|
|