Spaces:
Sleeping
Sleeping
Upload process_data.py
Browse files- utils/process_data.py +72 -0
utils/process_data.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PyPDF2 import PdfReader
|
2 |
+
from langchain.text_splitter import CharacterTextSplitter
|
3 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
4 |
+
from langchain_community.vectorstores import FAISS
|
5 |
+
|
6 |
+
|
7 |
+
CHUNK_SIZE = 1024
|
8 |
+
MAX_CHUNKS = 500
|
9 |
+
|
10 |
+
|
11 |
+
def split_text_into_chunks(text, chunk_size=CHUNK_SIZE):
|
12 |
+
"""
|
13 |
+
Splits text into smaller chunks.
|
14 |
+
Args:
|
15 |
+
text (str): Text to be split.
|
16 |
+
chunk_size (int, optional): Size of each chunk. Defaults to 4,000.
|
17 |
+
Returns:
|
18 |
+
list[str]: List of text chunks.
|
19 |
+
"""
|
20 |
+
chunks = []
|
21 |
+
for i in range(0, len(text), chunk_size):
|
22 |
+
chunks.append(text[i : i + chunk_size])
|
23 |
+
return chunks
|
24 |
+
|
25 |
+
|
26 |
+
def generate_chunks(inp_str, max_chunks=MAX_CHUNKS):
|
27 |
+
""" Chunk text into smaller pieces."""
|
28 |
+
inp_str = inp_str.replace('.', '.<eos>')
|
29 |
+
inp_str = inp_str.replace('?', '?<eos>')
|
30 |
+
inp_str = inp_str.replace('!', '!<eos>')
|
31 |
+
|
32 |
+
sentences = inp_str.split('<eos>')
|
33 |
+
current_chunk = 0
|
34 |
+
chunks = []
|
35 |
+
for sentence in sentences:
|
36 |
+
if len(chunks) == current_chunk + 1:
|
37 |
+
if len(chunks[current_chunk]) + len(sentence.split(' ')) <= max_chunks:
|
38 |
+
chunks[current_chunk].extend(sentence.split(' '))
|
39 |
+
else:
|
40 |
+
current_chunk += 1
|
41 |
+
chunks.append(sentence.split(' '))
|
42 |
+
else:
|
43 |
+
chunks.append(sentence.split(' '))
|
44 |
+
return [' '.join(chunk) for chunk in chunks]
|
45 |
+
|
46 |
+
|
47 |
+
def pdf_to_text(pdf_path):
|
48 |
+
"""
|
49 |
+
Converts a PDF file to text.
|
50 |
+
Args:
|
51 |
+
pdf_path (str): Path to the PDF file.
|
52 |
+
Returns:
|
53 |
+
str: Extracted text from the PDF file.
|
54 |
+
"""
|
55 |
+
reader = PdfReader(pdf_path)
|
56 |
+
extracted_texts = [page.extract_text() for page in reader.pages]
|
57 |
+
return " ".join(extracted_texts).replace("\n", " ")
|
58 |
+
|
59 |
+
|
60 |
+
def process_text(text):
|
61 |
+
""" Split the text into chunks using Langchain's CharacterTextSplitter """
|
62 |
+
text_splitter = CharacterTextSplitter(
|
63 |
+
separator="\n",
|
64 |
+
chunk_size=CHUNK_SIZE,
|
65 |
+
chunk_overlap=200,
|
66 |
+
length_function=len
|
67 |
+
)
|
68 |
+
chunks = text_splitter.split_text(text)
|
69 |
+
# Convert the chunks of text into embeddings to form a knowledge base
|
70 |
+
embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2')
|
71 |
+
knowledgeBase = FAISS.from_texts(chunks, embeddings)
|
72 |
+
return knowledgeBase
|