introvoyz041's picture
Upload folder using huggingface_hub
3f31c34 verified
import os
import pickle
import nibabel as nib
import numpy as np
import pandas as pd
import torch
import torch.nn.functional as F
from PIL import Image
from torch.utils.data import Dataset
from utils import generate_click_prompt, random_box, random_click
class SegRap(Dataset):
def __init__(self, args, data_path , transform = None, transform_msk = None, mode = 'Training',prompt = 'click', plane = False):
self.args = args
self.data_path = data_path
self.name_list = os.listdir(os.path.join(self.data_path,'SegRap2023_Training_Set_120cases_OneHot_Labels','Task001'))
self.mode = mode
self.prompt = prompt
self.img_size = args.image_size
self.transform = transform
self.transform_msk = transform_msk
def __len__(self):
return len(self.name_list)
def __getitem__(self, index):
# if self.mode == 'Training':
# point_label = random.randint(0, 1)
# inout = random.randint(0, 1)
# else:
# inout = 1
# point_label = 1
point_label = 1
label = 1 # 待分割的类别
"""Get the images"""
name = self.name_list[index].split('.')[0]
img = nib.load(os.path.join(self.data_path,'SegRap2023_Training_Set_120cases',name,'image.nii.gz')).get_fdata()
mask = nib.load(os.path.join(self.data_path,'SegRap2023_Training_Set_120cases_OneHot_Labels','Task001',name+'.nii.gz')).get_fdata()
img = np.resize(img,(self.args.image_size, self.args.image_size,img.shape[-1]))
mask = np.resize(mask,(self.args.out_size,self.args.out_size,mask.shape[-1]))
mask[mask!=label] = 0
mask[mask==label] = 1
img = torch.tensor(img).unsqueeze(0)
mask = torch.tensor(mask).unsqueeze(0).int()
if self.prompt == 'click':
point_label, pt = random_click(np.array(mask), point_label)
image_meta_dict = {'filename_or_obj':name}
return {
'image':img,
'label': mask,
'p_label':point_label,
'pt':pt,
'image_meta_dict':image_meta_dict,
}