File size: 2,009 Bytes
3f31c34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import os
import pickle

import nibabel as nib
import numpy as np
import pandas as pd
import torch
import torch.nn.functional as F
from PIL import Image
from torch.utils.data import Dataset

from utils import generate_click_prompt, random_box, random_click


class Pendal(Dataset):
    def __init__(self, args, data_path , transform = None, transform_msk = None, mode = 'Training',prompt = 'click', plane = False):

        self.args = args
        self.data_path = data_path
        self.name_list = os.listdir(os.path.join(self.data_path,'Images'))
        self.mode = mode
        self.prompt = prompt
        self.img_size = args.image_size

        self.transform = transform
        self.transform_msk = transform_msk

    def __len__(self):
        return len(self.name_list)


    def __getitem__(self, index):
        # if self.mode == 'Training':
        #     point_label = random.randint(0, 1)
        #     inout = random.randint(0, 1)
        # else:
        #     inout = 1
        #     point_label = 1
        point_label = 1

        """Get the images"""
        name = self.name_list[index]
        img = Image.open(os.path.join(self.data_path, 'Images',name)).convert('RGB')
        mask = Image.open(os.path.join(self.data_path, 'Segmentation1',name)).convert('L')

        mask = np.array(mask)
        mask[mask==mask.min()]=0
        mask[mask>0] = 255

        if self.prompt == 'click':
            point_label, pt = random_click(np.array(mask) / 255, point_label)

        if self.transform:
            state = torch.get_rng_state()
            img = self.transform(img)
            torch.set_rng_state(state)


            if self.transform_msk:
                mask = Image.fromarray(mask)
                mask = self.transform_msk(mask).int()

        image_meta_dict = {'filename_or_obj':name}
        return {
            'image':img,
            'label': mask,
            'p_label':point_label,
            'pt':pt,
            'image_meta_dict':image_meta_dict,
        }