File size: 10,642 Bytes
3f31c34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import numpy as np
import torchvision.transforms as transforms
from torch.utils.data import DataLoader, random_split
from torch.utils.data.sampler import SubsetRandomSampler

from utils import *

from .atlas import Atlas
from .brat import Brat
from .ddti import DDTI
from .isic import ISIC2016
from .kits import KITS
from .lidc import LIDC
from .lnq import LNQ
from .pendal import Pendal
from .refuge import REFUGE
from .segrap import SegRap
from .stare import STARE
from .toothfairy import ToothFairy
from .wbc import WBC


def get_dataloader(args):
    transform_train = transforms.Compose([
        transforms.Resize((args.image_size,args.image_size)),
        transforms.ToTensor(),
    ])

    transform_train_seg = transforms.Compose([
        transforms.Resize((args.out_size,args.out_size)),
        transforms.ToTensor(),
    ])

    transform_test = transforms.Compose([
        transforms.Resize((args.image_size, args.image_size)),
        transforms.ToTensor(),
    ])

    transform_test_seg = transforms.Compose([
        transforms.Resize((args.out_size,args.out_size)),
        transforms.ToTensor(),
    ])
    
    if args.dataset == 'isic':
        '''isic data'''
        isic_train_dataset = ISIC2016(args, args.data_path, transform = transform_train, transform_msk= transform_train_seg, mode = 'Training')
        isic_test_dataset = ISIC2016(args, args.data_path, transform = transform_test, transform_msk= transform_test_seg, mode = 'Test')

        nice_train_loader = DataLoader(isic_train_dataset, batch_size=args.b, shuffle=True, num_workers=8, pin_memory=True)
        nice_test_loader = DataLoader(isic_test_dataset, batch_size=args.b, shuffle=False, num_workers=8, pin_memory=True)
        '''end'''

    elif args.dataset == 'decathlon':
        nice_train_loader, nice_test_loader, transform_train, transform_val, train_list, val_list = get_decath_loader(args)


    elif args.dataset == 'REFUGE':
        '''REFUGE data'''
        refuge_train_dataset = REFUGE(args, args.data_path, transform = transform_train, transform_msk= transform_train_seg, mode = 'Training')
        refuge_test_dataset = REFUGE(args, args.data_path, transform = transform_test, transform_msk= transform_test_seg, mode = 'Test')

        nice_train_loader = DataLoader(refuge_train_dataset, batch_size=args.b, shuffle=True, num_workers=8, pin_memory=True)
        nice_test_loader = DataLoader(refuge_test_dataset, batch_size=args.b, shuffle=False, num_workers=8, pin_memory=True)
        '''end'''

    elif args.dataset == 'LIDC':
        '''LIDC data'''
        # dataset = LIDC(data_path = args.data_path)
        dataset = MyLIDC(args, data_path = args.data_path,transform = transform_train, transform_msk= transform_train_seg)

        dataset_size = len(dataset)
        indices = list(range(dataset_size))
        split = int(np.floor(0.2 * dataset_size))
        np.random.shuffle(indices)
        train_sampler = SubsetRandomSampler(indices[split:])
        test_sampler = SubsetRandomSampler(indices[:split])

        nice_train_loader = DataLoader(dataset, batch_size=args.b, sampler=train_sampler, num_workers=8, pin_memory=True)
        nice_test_loader = DataLoader(dataset, batch_size=args.b, sampler=test_sampler, num_workers=8, pin_memory=True)
        '''end'''

    elif args.dataset == 'DDTI':
        '''DDTI data'''
        refuge_train_dataset = DDTI(args, args.data_path, transform = transform_train, transform_msk= transform_train_seg, mode = 'Training')
        refuge_test_dataset = DDTI(args, args.data_path, transform = transform_test, transform_msk= transform_test_seg, mode = 'Test')

        nice_train_loader = DataLoader(refuge_train_dataset, batch_size=args.b, shuffle=True, num_workers=8, pin_memory=True)
        nice_test_loader = DataLoader(refuge_test_dataset, batch_size=args.b, shuffle=False, num_workers=8, pin_memory=True)
        '''end'''

    elif args.dataset == 'Brat':
        '''Brat data'''
        dataset = Brat(args, data_path = args.data_path,transform = transform_train, transform_msk= transform_train_seg)

        dataset_size = len(dataset)
        indices = list(range(dataset_size))
        split = int(np.floor(0.3 * dataset_size))
        np.random.shuffle(indices)
        train_sampler = SubsetRandomSampler(indices[split:])
        test_sampler = SubsetRandomSampler(indices[:split])

        nice_train_loader = DataLoader(dataset, batch_size=args.b, sampler=train_sampler, num_workers=8, pin_memory=True)
        nice_test_loader = DataLoader(dataset, batch_size=args.b, sampler=test_sampler, num_workers=8, pin_memory=True)
        '''end'''

    elif args.dataset == 'STARE':
        '''STARE data'''
        # dataset = LIDC(data_path = args.data_path)
        dataset = STARE(args, data_path = args.data_path, transform = transform_train, transform_msk= transform_train_seg)

        dataset_size = len(dataset)
        indices = list(range(dataset_size))
        split = int(np.floor(0.2 * dataset_size))
        np.random.shuffle(indices)
        train_sampler = SubsetRandomSampler(indices[split:])
        test_sampler = SubsetRandomSampler(indices[:split])

        nice_train_loader = DataLoader(dataset, batch_size=args.b, sampler=train_sampler, num_workers=8, pin_memory=True)
        nice_test_loader = DataLoader(dataset, batch_size=args.b, sampler=test_sampler, num_workers=8, pin_memory=True)
        '''end'''

    elif args.dataset == 'kits':
        '''kits data'''
        dataset = KITS(args, data_path = args.data_path,transform = transform_train, transform_msk= transform_train_seg)

        dataset_size = len(dataset)
        indices = list(range(dataset_size))
        split = int(np.floor(0.3 * dataset_size))
        np.random.shuffle(indices)
        train_sampler = SubsetRandomSampler(indices[split:])
        test_sampler = SubsetRandomSampler(indices[:split])

        nice_train_loader = DataLoader(dataset, batch_size=args.b, sampler=train_sampler, num_workers=8, pin_memory=True)
        nice_test_loader = DataLoader(dataset, batch_size=args.b, sampler=test_sampler, num_workers=8, pin_memory=True)
        '''end'''

    elif args.dataset == 'WBC':
        '''WBC data'''
        dataset = WBC(args, data_path = args.data_path,transform = transform_train, transform_msk= transform_train_seg)

        dataset_size = len(dataset)
        indices = list(range(dataset_size))
        split = int(np.floor(0.3 * dataset_size))
        np.random.shuffle(indices)
        train_sampler = SubsetRandomSampler(indices[split:])
        test_sampler = SubsetRandomSampler(indices[:split])

        nice_train_loader = DataLoader(dataset, batch_size=args.b, sampler=train_sampler, num_workers=8, pin_memory=True)
        nice_test_loader = DataLoader(dataset, batch_size=args.b, sampler=test_sampler, num_workers=8, pin_memory=True)
        '''end'''

    elif args.dataset == 'segrap':
        '''segrap data'''
        dataset = SegRap(args, data_path = args.data_path,transform = transform_train, transform_msk= transform_train_seg)

        dataset_size = len(dataset)
        indices = list(range(dataset_size))
        split = int(np.floor(0.3 * dataset_size))
        np.random.shuffle(indices)
        train_sampler = SubsetRandomSampler(indices[split:])
        test_sampler = SubsetRandomSampler(indices[:split])

        nice_train_loader = DataLoader(dataset, batch_size=args.b, sampler=train_sampler, num_workers=8, pin_memory=True)
        nice_test_loader = DataLoader(dataset, batch_size=args.b, sampler=test_sampler, num_workers=8, pin_memory=True)
        '''end'''

    elif args.dataset == 'toothfairy':
        '''toothfairy data'''
        dataset = ToothFairy(args, data_path = args.data_path,transform = transform_train, transform_msk= transform_train_seg)

        dataset_size = len(dataset)
        indices = list(range(dataset_size))
        split = int(np.floor(0.3 * dataset_size))
        np.random.shuffle(indices)
        train_sampler = SubsetRandomSampler(indices[split:])
        test_sampler = SubsetRandomSampler(indices[:split])

        nice_train_loader = DataLoader(dataset, batch_size=args.b, sampler=train_sampler, num_workers=8, pin_memory=True)
        nice_test_loader = DataLoader(dataset, batch_size=args.b, sampler=test_sampler, num_workers=8, pin_memory=True)
        '''end'''

    elif args.dataset == 'atlas':
        '''atlas data'''
        dataset = Atlas(args, data_path = args.data_path,transform = transform_train, transform_msk= transform_train_seg)

        dataset_size = len(dataset)
        indices = list(range(dataset_size))
        split = int(np.floor(0.3 * dataset_size))
        np.random.shuffle(indices)
        train_sampler = SubsetRandomSampler(indices[split:])
        test_sampler = SubsetRandomSampler(indices[:split])

        nice_train_loader = DataLoader(dataset, batch_size=args.b, sampler=train_sampler, num_workers=8, pin_memory=True)
        nice_test_loader = DataLoader(dataset, batch_size=args.b, sampler=test_sampler, num_workers=8, pin_memory=True)
        '''end'''

    elif args.dataset == 'pendal':
        '''pendal data'''
        dataset = Pendal(args, data_path = args.data_path,transform = transform_train, transform_msk= transform_train_seg)

        dataset_size = len(dataset)
        indices = list(range(dataset_size))
        split = int(np.floor(0.3 * dataset_size))
        np.random.shuffle(indices)
        train_sampler = SubsetRandomSampler(indices[split:])
        test_sampler = SubsetRandomSampler(indices[:split])

        nice_train_loader = DataLoader(dataset, batch_size=args.b, sampler=train_sampler, num_workers=8, pin_memory=True)
        nice_test_loader = DataLoader(dataset, batch_size=args.b, sampler=test_sampler, num_workers=8, pin_memory=True)
        '''end'''

    elif args.dataset == 'lnq':
        '''lnq data'''
        dataset = LNQ(args, data_path = args.data_path,transform = transform_train, transform_msk= transform_train_seg)

        dataset_size = len(dataset)
        indices = list(range(dataset_size))
        split = int(np.floor(0.3 * dataset_size))
        np.random.shuffle(indices)
        train_sampler = SubsetRandomSampler(indices[split:])
        test_sampler = SubsetRandomSampler(indices[:split])

        nice_train_loader = DataLoader(dataset, batch_size=args.b, sampler=train_sampler, num_workers=8, pin_memory=True)
        nice_test_loader = DataLoader(dataset, batch_size=args.b, sampler=test_sampler, num_workers=8, pin_memory=True)
        '''end'''

    else:
        print("the dataset is not supported now!!!")
        
    return nice_train_loader, nice_test_loader