File size: 3,717 Bytes
5ce1fe8
 
 
 
 
 
 
2267fac
5ce1fe8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2267fac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ce1fe8
2267fac
 
 
 
 
 
 
 
 
5ce1fe8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2267fac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ce1fe8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
#!/usr/bin/python3
# -*- coding: utf-8 -*-
import argparse

import gradio as gr

from examples import examples
from models import model_map
from project_settings import project_path


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--examples_dir",
        default=(project_path / "data/examples").as_posix(),
        type=str
    )
    parser.add_argument(
        "--trained_model_dir",
        default=(project_path / "trained_models").as_posix(),
        type=str
    )
    args = parser.parse_args()
    return args


def update_model_dropdown(language: str):
    if language not in model_map.keys():
        raise ValueError(f"Unsupported language: {language}")

    choices = model_map[language]
    choices = [c["repo_id"] for c in choices]
    return gr.Dropdown(
        choices=choices,
        value=choices[0],
        interactive=True,
    )


def build_html_output(s: str, style: str = "result_item_success"):
    return f"""
    <div class='result'>
        <div class='result_item {style}'>
          {s}
        </div>
    </div>
    """


def process_uploaded_file(language: str,
                          repo_id: str,
                          decoding_method: str,
                          num_active_paths: int,
                          add_punctuation: str,
                          in_filename: str,
                          ):
    return "Dummy", build_html_output("Dummy")


def main():
    title = "# Automatic Speech Recognition with Next-gen Kaldi"

    language_choices = ["Chinese"]

    language_to_models = {
        "Chinese": ["None"]
    }

    # components
    language_radio = gr.Radio(
        label="Language",
        choices=language_choices,
        value=language_choices[0],
    )
    model_dropdown = gr.Dropdown(
        choices=language_to_models[language_choices[0]],
        label="Select a model",
        value=language_to_models[language_choices[0]][0],
    )
    language_radio.change(
        update_model_dropdown,
        inputs=language_radio,
        outputs=model_dropdown,
    )
    decoding_method_radio = gr.Radio(
        label="Decoding method",
        choices=["greedy_search", "modified_beam_search"],
        value="greedy_search",
    )
    num_active_paths_slider = gr.Slider(
        minimum=1,
        value=4,
        step=1,
        label="Number of active paths for modified_beam_search",
    )
    punct_radio = gr.Radio(
        label="Whether to add punctuation (Only for Chinese and English)",
        choices=["Yes", "No"],
        value="Yes",
    )

    # blocks
    with gr.Blocks() as blocks:
        gr.Markdown(value=title)

        with gr.Tabs():
            with gr.TabItem("Upload from disk"):
                uploaded_file = gr.Audio(
                    sources=["upload"],
                    type="filepath",
                    label="Upload from disk",
                )
                upload_button = gr.Button("Submit for recognition")
                uploaded_output = gr.Textbox(label="Recognized speech from uploaded file")
                uploaded_html_info = gr.HTML(label="Info")

                gr.Examples(
                    examples=examples,
                    inputs=[
                        language_radio,
                        model_dropdown,
                        decoding_method_radio,
                        num_active_paths_slider,
                        punct_radio,
                        uploaded_file,
                    ],
                    outputs=[uploaded_output, uploaded_html_info],
                    fn=process_uploaded_file,
                )

    blocks.queue().launch()

    return


if __name__ == "__main__":
    main()