Spaces:
Sleeping
Sleeping
File size: 10,759 Bytes
f757ba6 2a563da f757ba6 fd4d049 f757ba6 6eed986 4af0862 f757ba6 6eed986 4af0862 f757ba6 4af0862 f757ba6 a6e1323 f757ba6 2a563da 6eed986 a6e1323 6eed986 f757ba6 6eed986 f757ba6 6eed986 f757ba6 19a648e f757ba6 6eed986 a6e1323 f757ba6 a6e1323 5a99733 f757ba6 5a99733 f757ba6 960a48f 9f74466 960a48f 9f74466 f757ba6 72441d8 f757ba6 19a648e 6eed986 f757ba6 19a648e 5a99733 f757ba6 960a48f 9f74466 4cc0dc3 9f74466 f757ba6 19a648e 6eed986 19a648e 4af0862 f757ba6 19a648e 5a99733 f757ba6 19a648e f757ba6 19a648e f757ba6 5a99733 a477476 bdff8ba 88406b6 5a99733 2e6790c 5a99733 2e6790c a5daeeb 5a99733 435f122 2d1e5c5 435f122 2d1e5c5 5a99733 f757ba6 6eed986 f757ba6 6eed986 f757ba6 6eed986 f757ba6 6eed986 f757ba6 6eed986 f757ba6 6eed986 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 |
from langchain.docstore.document import Document
from llm_call import GeminiLLM
from langchain.chains.question_answering import load_qa_chain
import chromadb
from datetime import datetime
import os
from langchain_chroma import Chroma
from datetime import datetime
import pdfkit
from langchain.chains.question_answering import load_qa_chain
from langchain.prompts import PromptTemplate
from pathlib import Path
import os
from pypdf import PdfReader
from llm_call import SermonGeminiPromptTemplate
bookQuestion = dict()
llm = None
embed_model = None
retriever = None
contemplandoQuestion = {
'DEVOCIONALMENTE':'¿Cómo estimula Dios su corazón a través de Su Palabra?',
'EXÉGESIS':'Cuál es el contexto de este pasaje?',
'CRISTO':'¿Cómo se comprende este texto a la luz de Cristo?',
'ARCO REDENTOR':'¿Cómo encaja este texto en la metanarrativa de las Escrituras?',
'EVANGELION': '¿Cómo se declara el evangelio en este texto?',
'EVANGELION_TWO': '¿Cómo interpretamos este texto a la luz del evangelio?',
}
proclamandoQuestion = {
'PÚBLICO':'¿Cuáles son los ídolos en los corazones de las personas que rechazarían el evangelio de Cristo?',
'HISTORIA':'¿Cómo el guión de su predicación comunica la historia de Dios?',
'EXPECTATIVAS': '¿Qué espera Dios que hagan como respuesta a esta predicación?',
'EXPECTATIVAS_TWO': '¿Cuáles son sus expectativas divinas como predicador de este mensaje?',
}
bookQuestion['Contemplando'] = contemplandoQuestion
bookQuestion['Proclamando'] = proclamandoQuestion
HISTORY_ANSWER = ""
DIRECTORY_PATH_TO_DOWNLOAD = 'data/sermon_lab_ai/download_files'
if not os.path.exists(DIRECTORY_PATH_TO_DOWNLOAD):
os.makedirs(f"{DIRECTORY_PATH_TO_DOWNLOAD}")
def getCurrentFileName():
now = datetime.now()
strNow = now.strftime("%m%d%Y_%H%M%S")
return f"sermonDay_{strNow}.pdf"
fileAddresToDownload = f"{DIRECTORY_PATH_TO_DOWNLOAD}{os.sep}{getCurrentFileName()}"
FILE_PATH_NAME = fileAddresToDownload
def updatePromptTemplate(
llmModel,
promptTemplate,
inputVariablesTemplate
):
prompt = PromptTemplate(template = promptTemplate,
input_variables = inputVariablesTemplate)
if llmModel == None:
llmBuilder = GeminiLLM()
llmModel = llmBuilder.getLLM()
chain = load_qa_chain(
llmModel,
chain_type = "stuff",
prompt = prompt
)
return chain
def predict(query):
templates = SermonGeminiPromptTemplate()
chain = updatePromptTemplate(
templates.getSermonPromptTemplate('BUILD_PREPARE_QUESTIONS'),
['question','SERMON_CONTEXT','context']
)
if query != '':
global retriever
answer = askQuestion(
query,
chain,
retriever,
topic = query,
KEY = 'question'
)
answer = (answer.split("<|assistant|>")[-1]).strip()
HISTORY_ANSWER = answer
return answer
else:
return query
def predictContemplando(queryKey):
#Call to LLM LangChaing inference
query = contemplandoQuestion[queryKey]
return predict(query)
def predictProclamando(queryKey):
#Call to LLM LangChaing inference
query = proclamandoQuestion[queryKey]
return predict(query)
####
#
####
def predictFromInit( sermonTopic, llmModelList = []):
global HISTORY_ANSWER
keyStr = 'SERMON_TOPIC'
templates = SermonGeminiPromptTemplate()
llm = llmModelList[0] if len(llmModelList) > 0 else None
if HISTORY_ANSWER == '':
chain = updatePromptTemplate(
llm,
templates.getSermonPromptTemplates()['BUILD_INIT'],
[keyStr,'CANT_VERSICULOS','context']
)
else:
chain = updatePromptTemplate(
templates.getSermonPromptTemplates()['BUILD_EMPTY'],
['BIBLE_VERSICLE','context']
)
keyStr = 'BIBLE_VERSICLE'
global retriever
global embed_model
if embed_model == None:
llmBuilder = GeminiLLM()
embed_model = llmBuilder.getEmbeddingsModel()
if retriever == None:
doc = Document(page_content="text", metadata={"source": "local"})
vectorstore = Chroma.from_documents(
documents=[doc],
embedding= embed_model,
persist_directory="chroma_db_dir_sermon", # Local mode with in-memory storage only
collection_name="sermon_lab_ai"
)
retriever = vectorstore.as_retriever(
search_kwargs={"k": 3}
)
answer = askQuestionInit(
'',
chain,
retriever,
topic = sermonTopic,
KEY = keyStr
)
#Create a new document and build a retriver
if answer != '':
doc = Document(page_content="text", metadata = {"source": "local"})
vectorstore = Chroma.from_documents(
documents=[doc],
embedding=embed_model,
persist_directory="chroma_db_dir_sermon", # Local mode with in-memory storage only
collection_name="sermon_lab_ai"
)
retriever = vectorstore.as_retriever(
search_kwargs = {"k": 3}
)
HISTORY_ANSWER = answer
return answer
####
#
####
def predictQuestionBuild(sermonTopic, llmModelList = []):
llm = llmModelList[0] if len(llmModelList) > 0 else None
templates = SermonGeminiPromptTemplate()
chain = updatePromptTemplate(
llm,
templates.getSermonPromptTemplates()['BUILD_QUESTION'],
['SERMON_IDEA', 'context']
)
global retriever
global embed_model
if embed_model == None:
llmBuilder = GeminiLLM()
embed_model = llmBuilder.getEmbeddingsModel()
if retriever == None:
doc = Document(page_content="text", metadata={"source": "local"})
vectorstore = Chroma.from_documents(
documents = [doc],
embedding = embed_model,
persist_directory="chroma_db_dir_sermon", # Local mode with in-memory storage only
collection_name="sermon_lab_ai"
)
retriever = vectorstore.as_retriever(
search_kwargs={"k": 3}
)
answer = askQuestionEx(
'',
chain,
retriever,
topic = sermonTopic,
KEY = 'SERMON_IDEA'
)
return answer
####
#
####
def predictDevotionBuild(sermonTopic, llmModelList = []):
templates = SermonGeminiPromptTemplate()
llm = llmModelList[0] if len(llmModelList) > 0 else None
chain = updatePromptTemplate(
llm,
templates.getSermonPromptTemplate()['BUILD_REFLECTIONS'],
['SERMON_IDEA', 'context']
)
global retriever
global HISTORY_ANSWER
global embed_model
if embed_model == None:
llmBuilder = GeminiLLM()
embed_model = llmBuilder.getEmbeddingsModel()
if retriever == None:
doc = Document(page_content="text", metadata={"source": "local"})
vectorstore = Chroma.from_documents(
documents=[doc],
embedding=embed_model,
persist_directory="chroma_db_dir_sermon", # Local mode with in-memory storage only
collection_name="sermon_lab_ai"
)
retriever = vectorstore.as_retriever(
search_kwargs={"k": 3}
)
answer = askQuestionEx(
HISTORY_ANSWER,
chain,
retriever,
topic = sermonTopic,
KEY = 'SERMON_IDEA'
)
return answer
####
#
####
def predictArgumentQuestionBuild(questionAnswer, llmModelList = []):
templates = SermonGeminiPromptTemplate()
llm = llmModelList[0] if len(llmModelList) > 0 else None
chain = updatePromptTemplate(
llm,
templates.getSermonPromptTemplates()['BUILD_ADD_INFORMATION_TO_QUEST_ANSWER'],
['QUESTION_ANSWER', 'context']
)
global retriever
global HISTORY_ANSWER
global embed_model
if embed_model == None:
llmBuilder = GeminiLLM()
embed_model = llmBuilder.getEmbeddingsModel()
if retriever == None:
doc = Document(page_content="text", metadata={"source": "local"})
vectorstore = Chroma.from_documents(
documents=[doc],
embedding = embed_model,
persist_directory="chroma_db_dir_sermon", # Local mode with in-memory storage only
collection_name="sermon_lab_ai"
)
retriever = vectorstore.as_retriever(
search_kwargs={"k": 3}
)
answer = askQuestionEx(
"",
chain,
retriever,
topic = questionAnswer,
KEY = 'QUESTION_ANSWER'
)
return answer
# A utility function for answer generation
def askQuestion(
question,
_chain,
_retriever,
topic = 'el amor de Dios',
KEY = 'SERMON_TOPIC'
):
#Obtener los Chunks relevantes a la pregunta en el RAG
#print(f" Question: {question}")
context = _retriever.get_relevant_documents(question)
#print("---- Contexto ----")
#print(context)
#print("____________________GLOBAL________")
global HISTORY_ANSWER
#print (HISTORY_ANSWER)
return (
_chain({
KEY: topic,
'SERMON_CONTEXT': HISTORY_ANSWER,
"input_documents": context,
"question": question
},
return_only_outputs = True)
)['output_text']
#A utility function for answer generation
def askQuestionEx(
question,
_chain,
_retriever,
topic = 'el amor de Dios',
KEY = 'SERMON_TOPIC'
):
context = _retriever.get_relevant_documents(question)
global HISTORY_ANSWER
return (
_chain({
KEY: topic,
"input_documents": context,
"question": question
},
return_only_outputs=True)
)['output_text']
# A utility function for answer generation
def askQuestionInit(
question,
_chain,
_retriever,
topic = 'el amor de Dios',
KEY = 'SERMON_TOPIC'
):
#Obtener los Chunks relevantes a la pregunta en el RAG
context = _retriever.get_relevant_documents(question)
settings = {
KEY: topic,
"input_documents": context,
"question": question
}
if KEY == 'SERMON_TOPIC':
settings['CANT_VERSICULOS'] = 5
return (
_chain(
settings,
return_only_outputs=True)
)['output_text']
def downloadSermonFile(answer):
if os.path.exists(FILE_PATH_NAME):
os.remove(FILE_PATH_NAME)
pdfkit.from_string(
answer,
FILE_PATH_NAME
)
return ""
def upload_file_ex(files):
file_paths = [file.name for file in files]
for filepath in file_paths:
name = Path(filepath)
file_content = 'Empty content'
if os.path.exists(filepath):
file_content = ''
reader = PdfReader(filepath)
for page in reader.pages:
file_content += page.extract_text()
HISTORY_ANSWER = file_content
return [file_paths, file_content] |