File size: 10,759 Bytes
f757ba6
2a563da
f757ba6
 
 
 
fd4d049
 
f757ba6
 
 
6eed986
 
 
 
 
4af0862
f757ba6
6eed986
 
4af0862
f757ba6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4af0862
f757ba6
 
 
 
 
 
 
 
 
 
 
a6e1323
 
 
 
 
f757ba6
 
2a563da
 
 
 
 
6eed986
a6e1323
6eed986
 
 
 
f757ba6
 
6eed986
 
f757ba6
6eed986
f757ba6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19a648e
f757ba6
 
6eed986
 
a6e1323
 
f757ba6
 
a6e1323
5a99733
f757ba6
 
 
 
5a99733
f757ba6
 
 
 
 
960a48f
 
 
 
 
9f74466
 
 
 
 
 
960a48f
9f74466
 
 
 
 
 
 
 
f757ba6
 
 
 
 
 
 
 
 
 
 
 
72441d8
 
 
 
 
 
 
f757ba6
 
 
 
 
 
 
 
 
 
 
 
19a648e
 
6eed986
f757ba6
19a648e
5a99733
f757ba6
 
 
960a48f
 
 
 
 
9f74466
 
 
 
 
4cc0dc3
 
9f74466
 
 
 
 
 
 
f757ba6
 
 
 
 
 
 
 
 
 
 
 
 
19a648e
6eed986
19a648e
4af0862
f757ba6
19a648e
5a99733
f757ba6
 
19a648e
f757ba6
 
19a648e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f757ba6
 
 
 
 
 
 
 
 
 
 
5a99733
 
 
a477476
bdff8ba
88406b6
5a99733
2e6790c
 
 
5a99733
2e6790c
a5daeeb
5a99733
 
 
 
435f122
 
 
 
 
2d1e5c5
 
 
 
 
 
435f122
2d1e5c5
 
 
 
 
 
5a99733
 
 
 
 
 
 
 
 
 
f757ba6
 
6eed986
 
 
 
 
f757ba6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6eed986
f757ba6
 
 
6eed986
f757ba6
6eed986
 
 
 
 
f757ba6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6eed986
 
 
 
 
f757ba6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6eed986
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
from langchain.docstore.document import Document
from llm_call import GeminiLLM
from langchain.chains.question_answering import load_qa_chain
import chromadb
from datetime import datetime
import os
from langchain_chroma import Chroma

from datetime import datetime
import pdfkit
from langchain.chains.question_answering import load_qa_chain
from langchain.prompts import PromptTemplate
from pathlib import Path
import os
from pypdf import PdfReader
from llm_call import SermonGeminiPromptTemplate

bookQuestion = dict()
llm = None
embed_model = None
retriever = None

contemplandoQuestion = {
    'DEVOCIONALMENTE':'¿Cómo estimula Dios su corazón a través de Su Palabra?',
    'EXÉGESIS':'Cuál es el contexto de este pasaje?',
    'CRISTO':'¿Cómo se comprende este texto a la luz de Cristo?',
    'ARCO REDENTOR':'¿Cómo encaja este texto en la metanarrativa de las Escrituras?',
    'EVANGELION': '¿Cómo se declara el evangelio en este texto?',
    'EVANGELION_TWO': '¿Cómo interpretamos este texto a la luz del evangelio?',
     }

proclamandoQuestion = {
     'PÚBLICO':'¿Cuáles son los ídolos en los corazones de las personas que rechazarían el evangelio de Cristo?',
     'HISTORIA':'¿Cómo el guión de su predicación comunica la historia de Dios?',
     'EXPECTATIVAS': '¿Qué espera Dios que hagan como respuesta a esta predicación?',
     'EXPECTATIVAS_TWO': '¿Cuáles son sus expectativas divinas como predicador de este mensaje?',
 }


bookQuestion['Contemplando'] = contemplandoQuestion
bookQuestion['Proclamando'] = proclamandoQuestion

HISTORY_ANSWER = ""

DIRECTORY_PATH_TO_DOWNLOAD = 'data/sermon_lab_ai/download_files'


if not os.path.exists(DIRECTORY_PATH_TO_DOWNLOAD):
  os.makedirs(f"{DIRECTORY_PATH_TO_DOWNLOAD}")

def getCurrentFileName():
  now = datetime.now()
  strNow = now.strftime("%m%d%Y_%H%M%S")
  return f"sermonDay_{strNow}.pdf"

fileAddresToDownload = f"{DIRECTORY_PATH_TO_DOWNLOAD}{os.sep}{getCurrentFileName()}"
FILE_PATH_NAME = fileAddresToDownload

def updatePromptTemplate(
        llmModel,
        promptTemplate,
        inputVariablesTemplate
  ):
    prompt = PromptTemplate(template = promptTemplate,
                        input_variables = inputVariablesTemplate)

    if llmModel == None:
        llmBuilder = GeminiLLM()
        llmModel = llmBuilder.getLLM()

    chain = load_qa_chain(
        llmModel,
        chain_type = "stuff",
        prompt = prompt
    )

    return chain
def predict(query):
  templates = SermonGeminiPromptTemplate()

  chain = updatePromptTemplate(
      templates.getSermonPromptTemplate('BUILD_PREPARE_QUESTIONS'),
       ['question','SERMON_CONTEXT','context']
    )

  if query != '':
    global retriever
    answer = askQuestion(
        query,
        chain,
        retriever,
        topic = query,
        KEY = 'question'
    )
    answer = (answer.split("<|assistant|>")[-1]).strip()
    HISTORY_ANSWER = answer

    return answer
  else:
    return query

def predictContemplando(queryKey):
  #Call to LLM LangChaing inference
  query = contemplandoQuestion[queryKey]
  return predict(query)


def predictProclamando(queryKey):
  #Call to LLM LangChaing inference
  query = proclamandoQuestion[queryKey]
  return predict(query)

####
#
####
def predictFromInit( sermonTopic, llmModelList = []):
  global HISTORY_ANSWER
  keyStr = 'SERMON_TOPIC'
  templates = SermonGeminiPromptTemplate()

  llm = llmModelList[0] if len(llmModelList) > 0 else None

  if HISTORY_ANSWER == '':
    chain = updatePromptTemplate(
        llm,
        templates.getSermonPromptTemplates()['BUILD_INIT'],
        [keyStr,'CANT_VERSICULOS','context']
        )
  else:
    chain = updatePromptTemplate(
        templates.getSermonPromptTemplates()['BUILD_EMPTY'],
        ['BIBLE_VERSICLE','context']
        )
    keyStr = 'BIBLE_VERSICLE'

  global retriever
  global embed_model

  if embed_model == None:
      llmBuilder = GeminiLLM()
      embed_model = llmBuilder.getEmbeddingsModel()

  if retriever == None:
      doc = Document(page_content="text", metadata={"source": "local"})

      vectorstore = Chroma.from_documents(
          documents=[doc],
          embedding= embed_model,
          persist_directory="chroma_db_dir_sermon",  # Local mode with in-memory storage only
          collection_name="sermon_lab_ai"
      )

      retriever = vectorstore.as_retriever(
          search_kwargs={"k": 3}
      )

  answer = askQuestionInit(
      '',
      chain,
      retriever,
      topic = sermonTopic,
      KEY = keyStr
    )

  #Create a new document and build a retriver
  if answer != '':
    doc =  Document(page_content="text", metadata = {"source": "local"})

    vectorstore = Chroma.from_documents(
        documents=[doc],
        embedding=embed_model,
        persist_directory="chroma_db_dir_sermon",  # Local mode with in-memory storage only
        collection_name="sermon_lab_ai"
    )

    retriever = vectorstore.as_retriever(
        search_kwargs = {"k": 3}
    )


  HISTORY_ANSWER = answer

  return answer

####
#
####
def predictQuestionBuild(sermonTopic, llmModelList = []):
  llm = llmModelList[0] if len(llmModelList) > 0 else None
  templates = SermonGeminiPromptTemplate()
  chain = updatePromptTemplate(
      llm,
      templates.getSermonPromptTemplates()['BUILD_QUESTION'],
       ['SERMON_IDEA', 'context']
      )
  global retriever
  global embed_model

  if embed_model == None:
      llmBuilder = GeminiLLM()
      embed_model = llmBuilder.getEmbeddingsModel()

  if retriever == None:
      doc = Document(page_content="text", metadata={"source": "local"})

      vectorstore = Chroma.from_documents(
          documents = [doc],
          embedding = embed_model,
          persist_directory="chroma_db_dir_sermon",  # Local mode with in-memory storage only
          collection_name="sermon_lab_ai"
      )
      retriever = vectorstore.as_retriever(
          search_kwargs={"k": 3}
      )

  answer = askQuestionEx(
      '',
      chain,
      retriever,
      topic = sermonTopic,
      KEY = 'SERMON_IDEA'
    )

  return answer

####
#
####
def predictDevotionBuild(sermonTopic, llmModelList = []):
  templates = SermonGeminiPromptTemplate()
  llm = llmModelList[0] if len(llmModelList) > 0 else None

  chain = updatePromptTemplate(
      llm,
      templates.getSermonPromptTemplate()['BUILD_REFLECTIONS'],
       ['SERMON_IDEA', 'context']
      )

  global retriever
  global HISTORY_ANSWER
  global embed_model

  if embed_model == None:
      llmBuilder = GeminiLLM()
      embed_model = llmBuilder.getEmbeddingsModel()

  if retriever == None:
      doc = Document(page_content="text", metadata={"source": "local"})

      vectorstore = Chroma.from_documents(
          documents=[doc],
          embedding=embed_model,
          persist_directory="chroma_db_dir_sermon",  # Local mode with in-memory storage only
          collection_name="sermon_lab_ai"
      )
      retriever = vectorstore.as_retriever(
          search_kwargs={"k": 3}
      )

  answer = askQuestionEx(
      HISTORY_ANSWER,
      chain,
      retriever,
      topic = sermonTopic,
      KEY = 'SERMON_IDEA'
    )

  return answer


####
#
####
def predictArgumentQuestionBuild(questionAnswer, llmModelList = []):


  templates = SermonGeminiPromptTemplate()

  llm = llmModelList[0] if len(llmModelList) > 0 else None

  chain = updatePromptTemplate(
      llm,
      templates.getSermonPromptTemplates()['BUILD_ADD_INFORMATION_TO_QUEST_ANSWER'],
       ['QUESTION_ANSWER', 'context']
      )
  global retriever
  global HISTORY_ANSWER
  global embed_model

  if embed_model == None:
      llmBuilder = GeminiLLM()
      embed_model = llmBuilder.getEmbeddingsModel()

  if retriever == None:
      doc = Document(page_content="text", metadata={"source": "local"})

      vectorstore = Chroma.from_documents(
          documents=[doc],
          embedding = embed_model,
          persist_directory="chroma_db_dir_sermon",  # Local mode with in-memory storage only
          collection_name="sermon_lab_ai"
      )
      retriever = vectorstore.as_retriever(
          search_kwargs={"k": 3}
      )
  answer = askQuestionEx(
     "",
      chain,
      retriever,
      topic = questionAnswer,
      KEY = 'QUESTION_ANSWER'
    )

  return answer

# A utility function for answer generation
def askQuestion(
        question,
        _chain,
        _retriever,
        topic = 'el amor de Dios',
        KEY = 'SERMON_TOPIC'
    ):

   #Obtener los Chunks relevantes a la pregunta en el RAG
   #print(f" Question: {question}")

   context = _retriever.get_relevant_documents(question)

   #print("----  Contexto ----")
   #print(context)
   #print("____________________GLOBAL________")

   global HISTORY_ANSWER

   #print (HISTORY_ANSWER)

   return (
         _chain({
             KEY: topic,
             'SERMON_CONTEXT': HISTORY_ANSWER,
             "input_documents": context,
             "question": question
             },
            return_only_outputs = True)
         )['output_text']


 #A utility function for answer generation
def askQuestionEx(
        question,
        _chain,
        _retriever,
        topic = 'el amor de Dios',
        KEY = 'SERMON_TOPIC'
    ):

   context = _retriever.get_relevant_documents(question)

   global HISTORY_ANSWER

   return (
         _chain({
             KEY: topic,
             "input_documents": context,
             "question": question
             },
            return_only_outputs=True)
         )['output_text']

# A utility function for answer generation
def askQuestionInit(
        question,
        _chain,
        _retriever,
        topic = 'el amor de Dios',
        KEY = 'SERMON_TOPIC'
    ):

   #Obtener los Chunks relevantes a la pregunta en el RAG
   context = _retriever.get_relevant_documents(question)

   settings = {
             KEY: topic,
             "input_documents": context,
             "question": question
             }

   if KEY == 'SERMON_TOPIC':
     settings['CANT_VERSICULOS'] = 5

   return (
         _chain(
            settings,
            return_only_outputs=True)
         )['output_text']


def downloadSermonFile(answer):

  if os.path.exists(FILE_PATH_NAME):
    os.remove(FILE_PATH_NAME)

  pdfkit.from_string(
        answer,
       FILE_PATH_NAME
    )

  return ""


def upload_file_ex(files):
    file_paths = [file.name for file in files]

    for filepath in file_paths:
      name = Path(filepath)
      file_content = 'Empty content'

      if os.path.exists(filepath):
        file_content = ''
        reader = PdfReader(filepath)

        for page in reader.pages:
          file_content += page.extract_text()

        HISTORY_ANSWER = file_content
    return [file_paths, file_content]