|
import math |
|
|
|
import torch |
|
from torch import nn |
|
import torch.nn.functional as F |
|
|
|
from diffusers import CogVideoXDDIMScheduler |
|
|
|
from .nn import TimeEmbeddings, TextEmbeddings, VisualEmbeddings, RoPE3D, Modulation, MultiheadSelfAttention, MultiheadSelfAttentionTP, FeedForward, OutLayer |
|
from .utils import exist |
|
|
|
|
|
from torch.distributed.tensor.parallel import ( |
|
ColwiseParallel, |
|
PrepareModuleInput, |
|
PrepareModuleOutput, |
|
RowwiseParallel, |
|
SequenceParallel, |
|
parallelize_module, |
|
) |
|
|
|
from torch.distributed._tensor import Replicate, Shard |
|
|
|
def parallelize(model, tp_mesh): |
|
if tp_mesh.size() > 1: |
|
|
|
plan = { |
|
"in_layer":ColwiseParallel(), |
|
"out_layer": RowwiseParallel( |
|
output_layouts=Replicate(), |
|
) |
|
} |
|
parallelize_module(model.time_embeddings, tp_mesh, plan) |
|
|
|
plan = { |
|
"in_layer": ColwiseParallel(output_layouts=Replicate(),) |
|
} |
|
parallelize_module(model.text_embeddings, tp_mesh, plan) |
|
parallelize_module(model.visual_embeddings, tp_mesh, plan) |
|
|
|
for i, doubled_transformer_block in enumerate(model.transformer_blocks): |
|
for j, transformer_block in enumerate(doubled_transformer_block): |
|
transformer_block.self_attention = MultiheadSelfAttentionTP(transformer_block.self_attention) |
|
plan = { |
|
|
|
"text_modulation": PrepareModuleInput( |
|
input_layouts=(None, None), |
|
desired_input_layouts=(Replicate(), None), |
|
), |
|
"text_modulation.out_layer": ColwiseParallel(output_layouts=Replicate(),), |
|
|
|
"visual_modulation": PrepareModuleInput( |
|
input_layouts=(None, None), |
|
desired_input_layouts=(Replicate(), None), |
|
), |
|
"visual_modulation.out_layer": ColwiseParallel(output_layouts=Replicate(), use_local_output=True), |
|
|
|
|
|
"self_attention_norm": SequenceParallel(sequence_dim=0, use_local_output=True), |
|
|
|
|
|
"self_attention.to_query": ColwiseParallel( |
|
input_layouts=Replicate(), |
|
), |
|
"self_attention.to_key": ColwiseParallel( |
|
input_layouts=Replicate(), |
|
), |
|
"self_attention.to_value": ColwiseParallel( |
|
input_layouts=Replicate(), |
|
), |
|
|
|
"self_attention.query_norm": SequenceParallel(sequence_dim=0, use_local_output=True), |
|
"self_attention.key_norm": SequenceParallel(sequence_dim=0, use_local_output=True), |
|
|
|
"self_attention.output_layer": RowwiseParallel( |
|
|
|
output_layouts=Replicate(), |
|
), |
|
|
|
|
|
"feed_forward_norm": SequenceParallel(sequence_dim=0, use_local_output=True), |
|
|
|
|
|
"feed_forward.in_layer": ColwiseParallel(), |
|
"feed_forward.out_layer": RowwiseParallel(), |
|
} |
|
self_attn = transformer_block.self_attention |
|
self_attn.num_heads = self_attn.num_heads // tp_mesh.size() |
|
parallelize_module(transformer_block, tp_mesh, plan) |
|
|
|
plan = { |
|
"modulation_out":ColwiseParallel(output_layouts=Replicate(),), |
|
"out_layer": ColwiseParallel(output_layouts=Replicate(),), |
|
} |
|
parallelize_module(model.out_layer, tp_mesh, plan) |
|
|
|
plan={ |
|
"time_embeddings": PrepareModuleInput(desired_input_layouts=Replicate(),), |
|
"text_embeddings": PrepareModuleInput(desired_input_layouts=Replicate(),), |
|
"visual_embeddings": PrepareModuleInput(desired_input_layouts=Replicate(),), |
|
"out_layer": PrepareModuleInput( |
|
input_layouts=(None, None, None, None), |
|
desired_input_layouts=(Replicate(), Replicate(), Replicate(), None)), |
|
} |
|
parallelize_module(model, tp_mesh, {}) |
|
return model |
|
|
|
class TransformerBlock(nn.Module): |
|
|
|
def __init__(self, model_dim, time_dim, ff_dim, head_dim=64): |
|
super().__init__() |
|
self.visual_modulation = Modulation(time_dim, model_dim) |
|
self.text_modulation = Modulation(time_dim, model_dim) |
|
|
|
self.self_attention_norm = nn.LayerNorm(model_dim, elementwise_affine=True) |
|
self.self_attention = MultiheadSelfAttention(model_dim, head_dim) |
|
|
|
self.feed_forward_norm = nn.LayerNorm(model_dim, elementwise_affine=True) |
|
self.feed_forward = FeedForward(model_dim, ff_dim) |
|
|
|
def forward(self, visual_embed, text_embed, time_embed, rope, visual_cu_seqlens, text_cu_seqlens, num_groups, attention_type): |
|
visual_shape = visual_embed.shape[:-1] |
|
visual_self_attn_params, visual_ff_params = self.visual_modulation(time_embed, visual_cu_seqlens) |
|
text_self_attn_params, text_ff_params = self.text_modulation(time_embed, text_cu_seqlens) |
|
|
|
visual_shift, visual_scale, visual_gate = torch.chunk(visual_self_attn_params, 3, dim=-1) |
|
text_shift, text_scale, text_gate = torch.chunk(text_self_attn_params, 3, dim=-1) |
|
visual_out = self.self_attention_norm(visual_embed) * (visual_scale[:, None, None] + 1.) + visual_shift[:, None, None] |
|
text_out = self.self_attention_norm(text_embed) * (text_scale + 1.) + text_shift |
|
visual_out, text_out = self.self_attention(visual_out, text_out, rope, visual_cu_seqlens, text_cu_seqlens, num_groups, attention_type) |
|
|
|
visual_embed = visual_embed + visual_gate[:, None, None] * visual_out |
|
text_embed = text_embed + text_gate * text_out |
|
|
|
visual_shift, visual_scale, visual_gate = torch.chunk(visual_ff_params, 3, dim=-1) |
|
visual_out = self.feed_forward_norm(visual_embed) * (visual_scale[:, None, None] + 1.) + visual_shift[:, None, None] |
|
visual_embed = visual_embed + visual_gate[:, None, None] * self.feed_forward(visual_out) |
|
|
|
text_shift, text_scale, text_gate = torch.chunk(text_ff_params, 3, dim=-1) |
|
text_out = self.feed_forward_norm(text_embed) * (text_scale + 1.) + text_shift |
|
text_embed = text_embed + text_gate * self.feed_forward(text_out) |
|
return visual_embed, text_embed |
|
|
|
|
|
class DiffusionTransformer3D(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
in_visual_dim=4, |
|
in_text_dim=2048, |
|
time_dim=512, |
|
out_visual_dim=4, |
|
patch_size=(1, 2, 2), |
|
model_dim=2048, |
|
ff_dim=5120, |
|
num_blocks=8, |
|
axes_dims=(16, 24, 24), |
|
): |
|
super().__init__() |
|
head_dim = sum(axes_dims) |
|
self.in_visual_dim = in_visual_dim |
|
self.model_dim = model_dim |
|
self.num_blocks = num_blocks |
|
|
|
self.time_embeddings = TimeEmbeddings(model_dim, time_dim) |
|
self.text_embeddings = TextEmbeddings(in_text_dim, model_dim) |
|
self.visual_embeddings = VisualEmbeddings(in_visual_dim, model_dim, patch_size) |
|
self.rope_embeddings = RoPE3D(axes_dims) |
|
|
|
self.transformer_blocks = nn.ModuleList([ |
|
nn.ModuleList([ |
|
TransformerBlock(model_dim, time_dim, ff_dim, head_dim), |
|
TransformerBlock(model_dim, time_dim, ff_dim, head_dim), |
|
]) for _ in range(num_blocks) |
|
]) |
|
|
|
self.out_layer = OutLayer(model_dim, time_dim, out_visual_dim, patch_size) |
|
|
|
def forward(self, x, text_embed, time, visual_cu_seqlens, text_cu_seqlens, num_groups=(1, 1, 1), scale_factor=(1., 1., 1.)): |
|
time_embed = self.time_embeddings(time) |
|
text_embed = self.text_embeddings(text_embed) |
|
visual_embed = self.visual_embeddings(x) |
|
rope = self.rope_embeddings(visual_embed, visual_cu_seqlens, scale_factor) |
|
|
|
for i, (local_attention, global_attention) in enumerate(self.transformer_blocks): |
|
visual_embed, text_embed = local_attention( |
|
visual_embed, text_embed, time_embed, rope, visual_cu_seqlens, text_cu_seqlens, num_groups, 'local' |
|
) |
|
visual_embed, text_embed = global_attention( |
|
visual_embed, text_embed, time_embed, rope, visual_cu_seqlens, text_cu_seqlens, num_groups, 'global' |
|
) |
|
|
|
return self.out_layer(visual_embed, text_embed, time_embed, visual_cu_seqlens) |
|
|
|
|
|
def get_dit(conf): |
|
dit = DiffusionTransformer3D(**conf.params) |
|
state_dict = torch.load(conf.checkpoint_path, weights_only=True, map_location=torch.device('cpu')) |
|
dit.load_state_dict(state_dict, strict=False) |
|
return dit |
|
|
|
|