Spaces:
Build error
Build error
| """ | |
| Mask R-CNN | |
| The main Mask R-CNN model implementation. | |
| Copyright (c) 2017 Matterport, Inc. | |
| Licensed under the MIT License (see LICENSE for details) | |
| Written by Waleed Abdulla | |
| """ | |
| import datetime | |
| import logging | |
| import math | |
| import multiprocessing | |
| import os | |
| import random | |
| import re | |
| from collections import OrderedDict | |
| # Requires TensorFlow 1.3+ and Keras 2.0.8+. | |
| from distutils.version import LooseVersion | |
| import keras | |
| import keras.backend as K | |
| import keras.engine as KE | |
| import keras.layers as KL | |
| import keras.models as KM | |
| import numpy as np | |
| import tensorflow as tf | |
| from mrcnn import utils | |
| assert LooseVersion(tf.__version__) >= LooseVersion("1.3") | |
| assert LooseVersion(keras.__version__) >= LooseVersion("2.0.8") | |
| ############################################################ | |
| # Utility Functions | |
| ############################################################ | |
| def log(text, array=None): | |
| """Prints a text message. And, optionally, if a Numpy array is provided it | |
| prints it's shape, min, and max values. | |
| """ | |
| if array is not None: | |
| text = text.ljust(25) | |
| text += "shape: {:20} ".format(str(array.shape)) | |
| if array.size: | |
| text += "min: {:10.5f} max: {:10.5f}".format(array.min(), array.max()) | |
| else: | |
| text += "min: {:10} max: {:10}".format("", "") | |
| text += " {}".format(array.dtype) | |
| print(text) | |
| class BatchNorm(KL.BatchNormalization): | |
| """Extends the Keras BatchNormalization class to allow a central place | |
| to make changes if needed. | |
| Batch normalization has a negative effect on training if batches are small | |
| so this layer is often frozen (via setting in Config class) and functions | |
| as linear layer. | |
| """ | |
| def call(self, inputs, training=None): | |
| """ | |
| Note about training values: | |
| None: Train BN layers. This is the normal mode | |
| False: Freeze BN layers. Good when batch size is small | |
| True: (don't use). Set layer in training mode even when making inferences | |
| """ | |
| return super(self.__class__, self).call(inputs, training=training) | |
| def compute_backbone_shapes(config, image_shape): | |
| """Computes the width and height of each stage of the backbone network. | |
| Returns: | |
| [N, (height, width)]. Where N is the number of stages | |
| """ | |
| if callable(config.BACKBONE): | |
| return config.COMPUTE_BACKBONE_SHAPE(image_shape) | |
| # Currently supports ResNet only | |
| assert config.BACKBONE in ["resnet50", "resnet101"] | |
| return np.array( | |
| [ | |
| [ | |
| int(math.ceil(image_shape[0] / stride)), | |
| int(math.ceil(image_shape[1] / stride)), | |
| ] | |
| for stride in config.BACKBONE_STRIDES | |
| ] | |
| ) | |
| ############################################################ | |
| # Resnet Graph | |
| ############################################################ | |
| # Code adopted from: | |
| # https://github.com/fchollet/deep-learning-models/blob/master/resnet50.py | |
| def identity_block( | |
| input_tensor, kernel_size, filters, stage, block, use_bias=True, train_bn=True | |
| ): | |
| """The identity_block is the block that has no conv layer at shortcut | |
| # Arguments | |
| input_tensor: input tensor | |
| kernel_size: default 3, the kernel size of middle conv layer at main path | |
| filters: list of integers, the nb_filters of 3 conv layer at main path | |
| stage: integer, current stage label, used for generating layer names | |
| block: 'a','b'..., current block label, used for generating layer names | |
| use_bias: Boolean. To use or not use a bias in conv layers. | |
| train_bn: Boolean. Train or freeze Batch Norm layers | |
| """ | |
| nb_filter1, nb_filter2, nb_filter3 = filters | |
| conv_name_base = "res" + str(stage) + block + "_branch" | |
| bn_name_base = "bn" + str(stage) + block + "_branch" | |
| x = KL.Conv2D(nb_filter1, (1, 1), name=conv_name_base + "2a", use_bias=use_bias)( | |
| input_tensor | |
| ) | |
| x = BatchNorm(name=bn_name_base + "2a")(x, training=train_bn) | |
| x = KL.Activation("relu")(x) | |
| x = KL.Conv2D( | |
| nb_filter2, | |
| (kernel_size, kernel_size), | |
| padding="same", | |
| name=conv_name_base + "2b", | |
| use_bias=use_bias, | |
| )(x) | |
| x = BatchNorm(name=bn_name_base + "2b")(x, training=train_bn) | |
| x = KL.Activation("relu")(x) | |
| x = KL.Conv2D(nb_filter3, (1, 1), name=conv_name_base + "2c", use_bias=use_bias)(x) | |
| x = BatchNorm(name=bn_name_base + "2c")(x, training=train_bn) | |
| x = KL.Add()([x, input_tensor]) | |
| x = KL.Activation("relu", name="res" + str(stage) + block + "_out")(x) | |
| return x | |
| def conv_block( | |
| input_tensor, | |
| kernel_size, | |
| filters, | |
| stage, | |
| block, | |
| strides=(2, 2), | |
| use_bias=True, | |
| train_bn=True, | |
| ): | |
| """conv_block is the block that has a conv layer at shortcut | |
| # Arguments | |
| input_tensor: input tensor | |
| kernel_size: default 3, the kernel size of middle conv layer at main path | |
| filters: list of integers, the nb_filters of 3 conv layer at main path | |
| stage: integer, current stage label, used for generating layer names | |
| block: 'a','b'..., current block label, used for generating layer names | |
| use_bias: Boolean. To use or not use a bias in conv layers. | |
| train_bn: Boolean. Train or freeze Batch Norm layers | |
| Note that from stage 3, the first conv layer at main path is with subsample=(2,2) | |
| And the shortcut should have subsample=(2,2) as well | |
| """ | |
| nb_filter1, nb_filter2, nb_filter3 = filters | |
| conv_name_base = "res" + str(stage) + block + "_branch" | |
| bn_name_base = "bn" + str(stage) + block + "_branch" | |
| x = KL.Conv2D( | |
| nb_filter1, | |
| (1, 1), | |
| strides=strides, | |
| name=conv_name_base + "2a", | |
| use_bias=use_bias, | |
| )(input_tensor) | |
| x = BatchNorm(name=bn_name_base + "2a")(x, training=train_bn) | |
| x = KL.Activation("relu")(x) | |
| x = KL.Conv2D( | |
| nb_filter2, | |
| (kernel_size, kernel_size), | |
| padding="same", | |
| name=conv_name_base + "2b", | |
| use_bias=use_bias, | |
| )(x) | |
| x = BatchNorm(name=bn_name_base + "2b")(x, training=train_bn) | |
| x = KL.Activation("relu")(x) | |
| x = KL.Conv2D(nb_filter3, (1, 1), name=conv_name_base + "2c", use_bias=use_bias)(x) | |
| x = BatchNorm(name=bn_name_base + "2c")(x, training=train_bn) | |
| shortcut = KL.Conv2D( | |
| nb_filter3, | |
| (1, 1), | |
| strides=strides, | |
| name=conv_name_base + "1", | |
| use_bias=use_bias, | |
| )(input_tensor) | |
| shortcut = BatchNorm(name=bn_name_base + "1")(shortcut, training=train_bn) | |
| x = KL.Add()([x, shortcut]) | |
| x = KL.Activation("relu", name="res" + str(stage) + block + "_out")(x) | |
| return x | |
| def resnet_graph(input_image, architecture, stage5=False, train_bn=True): | |
| """Build a ResNet graph. | |
| architecture: Can be resnet50 or resnet101 | |
| stage5: Boolean. If False, stage5 of the network is not created | |
| train_bn: Boolean. Train or freeze Batch Norm layers | |
| """ | |
| assert architecture in ["resnet50", "resnet101"] | |
| # Stage 1 | |
| x = KL.ZeroPadding2D((3, 3))(input_image) | |
| x = KL.Conv2D(64, (7, 7), strides=(2, 2), name="conv1", use_bias=True)(x) | |
| x = BatchNorm(name="bn_conv1")(x, training=train_bn) | |
| x = KL.Activation("relu")(x) | |
| C1 = x = KL.MaxPooling2D((3, 3), strides=(2, 2), padding="same")(x) | |
| # Stage 2 | |
| x = conv_block( | |
| x, 3, [64, 64, 256], stage=2, block="a", strides=(1, 1), train_bn=train_bn | |
| ) | |
| x = identity_block(x, 3, [64, 64, 256], stage=2, block="b", train_bn=train_bn) | |
| C2 = x = identity_block(x, 3, [64, 64, 256], stage=2, block="c", train_bn=train_bn) | |
| # Stage 3 | |
| x = conv_block(x, 3, [128, 128, 512], stage=3, block="a", train_bn=train_bn) | |
| x = identity_block(x, 3, [128, 128, 512], stage=3, block="b", train_bn=train_bn) | |
| x = identity_block(x, 3, [128, 128, 512], stage=3, block="c", train_bn=train_bn) | |
| C3 = x = identity_block( | |
| x, 3, [128, 128, 512], stage=3, block="d", train_bn=train_bn | |
| ) | |
| # Stage 4 | |
| x = conv_block(x, 3, [256, 256, 1024], stage=4, block="a", train_bn=train_bn) | |
| block_count = {"resnet50": 5, "resnet101": 22}[architecture] | |
| for i in range(block_count): | |
| x = identity_block( | |
| x, 3, [256, 256, 1024], stage=4, block=chr(98 + i), train_bn=train_bn | |
| ) | |
| C4 = x | |
| # Stage 5 | |
| if stage5: | |
| x = conv_block(x, 3, [512, 512, 2048], stage=5, block="a", train_bn=train_bn) | |
| x = identity_block( | |
| x, 3, [512, 512, 2048], stage=5, block="b", train_bn=train_bn | |
| ) | |
| C5 = x = identity_block( | |
| x, 3, [512, 512, 2048], stage=5, block="c", train_bn=train_bn | |
| ) | |
| else: | |
| C5 = None | |
| return [C1, C2, C3, C4, C5] | |
| ############################################################ | |
| # Proposal Layer | |
| ############################################################ | |
| def apply_box_deltas_graph(boxes, deltas): | |
| """Applies the given deltas to the given boxes. | |
| boxes: [N, (y1, x1, y2, x2)] boxes to update | |
| deltas: [N, (dy, dx, log(dh), log(dw))] refinements to apply | |
| """ | |
| # Convert to y, x, h, w | |
| height = boxes[:, 2] - boxes[:, 0] | |
| width = boxes[:, 3] - boxes[:, 1] | |
| center_y = boxes[:, 0] + 0.5 * height | |
| center_x = boxes[:, 1] + 0.5 * width | |
| # Apply deltas | |
| center_y += deltas[:, 0] * height | |
| center_x += deltas[:, 1] * width | |
| height *= tf.exp(deltas[:, 2]) | |
| width *= tf.exp(deltas[:, 3]) | |
| # Convert back to y1, x1, y2, x2 | |
| y1 = center_y - 0.5 * height | |
| x1 = center_x - 0.5 * width | |
| y2 = y1 + height | |
| x2 = x1 + width | |
| result = tf.stack([y1, x1, y2, x2], axis=1, name="apply_box_deltas_out") | |
| return result | |
| def clip_boxes_graph(boxes, window): | |
| """ | |
| boxes: [N, (y1, x1, y2, x2)] | |
| window: [4] in the form y1, x1, y2, x2 | |
| """ | |
| # Split | |
| wy1, wx1, wy2, wx2 = tf.split(window, 4) | |
| y1, x1, y2, x2 = tf.split(boxes, 4, axis=1) | |
| # Clip | |
| y1 = tf.maximum(tf.minimum(y1, wy2), wy1) | |
| x1 = tf.maximum(tf.minimum(x1, wx2), wx1) | |
| y2 = tf.maximum(tf.minimum(y2, wy2), wy1) | |
| x2 = tf.maximum(tf.minimum(x2, wx2), wx1) | |
| clipped = tf.concat([y1, x1, y2, x2], axis=1, name="clipped_boxes") | |
| clipped.set_shape((clipped.shape[0], 4)) | |
| return clipped | |
| class ProposalLayer(KE.Layer): | |
| """Receives anchor scores and selects a subset to pass as proposals | |
| to the second stage. Filtering is done based on anchor scores and | |
| non-max suppression to remove overlaps. It also applies bounding | |
| box refinement deltas to anchors. | |
| Inputs: | |
| rpn_probs: [batch, num_anchors, (bg prob, fg prob)] | |
| rpn_bbox: [batch, num_anchors, (dy, dx, log(dh), log(dw))] | |
| anchors: [batch, num_anchors, (y1, x1, y2, x2)] anchors in normalized coordinates | |
| Returns: | |
| Proposals in normalized coordinates [batch, rois, (y1, x1, y2, x2)] | |
| """ | |
| def __init__(self, proposal_count, nms_threshold, config=None, **kwargs): | |
| super(ProposalLayer, self).__init__(**kwargs) | |
| self.config = config | |
| self.proposal_count = proposal_count | |
| self.nms_threshold = nms_threshold | |
| def call(self, inputs): | |
| # Box Scores. Use the foreground class confidence. [Batch, num_rois, 1] | |
| scores = inputs[0][:, :, 1] | |
| # Box deltas [batch, num_rois, 4] | |
| deltas = inputs[1] | |
| deltas = deltas * np.reshape(self.config.RPN_BBOX_STD_DEV, [1, 1, 4]) | |
| # Anchors | |
| anchors = inputs[2] | |
| # Improve performance by trimming to top anchors by score | |
| # and doing the rest on the smaller subset. | |
| pre_nms_limit = tf.minimum(self.config.PRE_NMS_LIMIT, tf.shape(anchors)[1]) | |
| ix = tf.nn.top_k(scores, pre_nms_limit, sorted=True, name="top_anchors").indices | |
| scores = utils.batch_slice( | |
| [scores, ix], lambda x, y: tf.gather(x, y), self.config.IMAGES_PER_GPU | |
| ) | |
| deltas = utils.batch_slice( | |
| [deltas, ix], lambda x, y: tf.gather(x, y), self.config.IMAGES_PER_GPU | |
| ) | |
| pre_nms_anchors = utils.batch_slice( | |
| [anchors, ix], | |
| lambda a, x: tf.gather(a, x), | |
| self.config.IMAGES_PER_GPU, | |
| names=["pre_nms_anchors"], | |
| ) | |
| # Apply deltas to anchors to get refined anchors. | |
| # [batch, N, (y1, x1, y2, x2)] | |
| boxes = utils.batch_slice( | |
| [pre_nms_anchors, deltas], | |
| lambda x, y: apply_box_deltas_graph(x, y), | |
| self.config.IMAGES_PER_GPU, | |
| names=["refined_anchors"], | |
| ) | |
| # Clip to image boundaries. Since we're in normalized coordinates, | |
| # clip to 0..1 range. [batch, N, (y1, x1, y2, x2)] | |
| window = np.array([0, 0, 1, 1], dtype=np.float32) | |
| boxes = utils.batch_slice( | |
| boxes, | |
| lambda x: clip_boxes_graph(x, window), | |
| self.config.IMAGES_PER_GPU, | |
| names=["refined_anchors_clipped"], | |
| ) | |
| # Filter out small boxes | |
| # According to Xinlei Chen's paper, this reduces detection accuracy | |
| # for small objects, so we're skipping it. | |
| # Non-max suppression | |
| def nms(boxes, scores): | |
| indices = tf.image.non_max_suppression( | |
| boxes, | |
| scores, | |
| self.proposal_count, | |
| self.nms_threshold, | |
| name="rpn_non_max_suppression", | |
| ) | |
| proposals = tf.gather(boxes, indices) | |
| # Pad if needed | |
| padding = tf.maximum(self.proposal_count - tf.shape(proposals)[0], 0) | |
| proposals = tf.pad(proposals, [(0, padding), (0, 0)]) | |
| return proposals | |
| proposals = utils.batch_slice([boxes, scores], nms, self.config.IMAGES_PER_GPU) | |
| return proposals | |
| def compute_output_shape(self, input_shape): | |
| return (None, self.proposal_count, 4) | |
| ############################################################ | |
| # ROIAlign Layer | |
| ############################################################ | |
| def log2_graph(x): | |
| """Implementation of Log2. TF doesn't have a native implementation.""" | |
| return tf.log(x) / tf.log(2.0) | |
| class PyramidROIAlign(KE.Layer): | |
| """Implements ROI Pooling on multiple levels of the feature pyramid. | |
| Params: | |
| - pool_shape: [pool_height, pool_width] of the output pooled regions. Usually [7, 7] | |
| Inputs: | |
| - boxes: [batch, num_boxes, (y1, x1, y2, x2)] in normalized | |
| coordinates. Possibly padded with zeros if not enough | |
| boxes to fill the array. | |
| - image_meta: [batch, (meta data)] Image details. See compose_image_meta() | |
| - feature_maps: List of feature maps from different levels of the pyramid. | |
| Each is [batch, height, width, channels] | |
| Output: | |
| Pooled regions in the shape: [batch, num_boxes, pool_height, pool_width, channels]. | |
| The width and height are those specific in the pool_shape in the layer | |
| constructor. | |
| """ | |
| def __init__(self, pool_shape, **kwargs): | |
| super(PyramidROIAlign, self).__init__(**kwargs) | |
| self.pool_shape = tuple(pool_shape) | |
| def call(self, inputs): | |
| # Crop boxes [batch, num_boxes, (y1, x1, y2, x2)] in normalized coords | |
| boxes = inputs[0] | |
| # Image meta | |
| # Holds details about the image. See compose_image_meta() | |
| image_meta = inputs[1] | |
| # Feature Maps. List of feature maps from different level of the | |
| # feature pyramid. Each is [batch, height, width, channels] | |
| feature_maps = inputs[2:] | |
| # Assign each ROI to a level in the pyramid based on the ROI area. | |
| y1, x1, y2, x2 = tf.split(boxes, 4, axis=2) | |
| h = y2 - y1 | |
| w = x2 - x1 | |
| # Use shape of first image. Images in a batch must have the same size. | |
| image_shape = parse_image_meta_graph(image_meta)["image_shape"][0] | |
| # Equation 1 in the Feature Pyramid Networks paper. Account for | |
| # the fact that our coordinates are normalized here. | |
| # e.g. a 224x224 ROI (in pixels) maps to P4 | |
| image_area = tf.cast(image_shape[0] * image_shape[1], tf.float32) | |
| roi_level = log2_graph(tf.sqrt(h * w) / (224.0 / tf.sqrt(image_area))) | |
| roi_level = tf.minimum( | |
| 5, tf.maximum(2, 4 + tf.cast(tf.round(roi_level), tf.int32)) | |
| ) | |
| roi_level = tf.squeeze(roi_level, 2) | |
| # Loop through levels and apply ROI pooling to each. P2 to P5. | |
| pooled = [] | |
| box_to_level = [] | |
| for i, level in enumerate(range(2, 6)): | |
| ix = tf.where(tf.equal(roi_level, level)) | |
| level_boxes = tf.gather_nd(boxes, ix) | |
| # Box indices for crop_and_resize. | |
| box_indices = tf.cast(ix[:, 0], tf.int32) | |
| # Keep track of which box is mapped to which level | |
| box_to_level.append(ix) | |
| # Stop gradient propogation to ROI proposals | |
| level_boxes = tf.stop_gradient(level_boxes) | |
| box_indices = tf.stop_gradient(box_indices) | |
| # Crop and Resize | |
| # From Mask R-CNN paper: "We sample four regular locations, so | |
| # that we can evaluate either max or average pooling. In fact, | |
| # interpolating only a single value at each bin center (without | |
| # pooling) is nearly as effective." | |
| # | |
| # Here we use the simplified approach of a single value per bin, | |
| # which is how it's done in tf.crop_and_resize() | |
| # Result: [batch * num_boxes, pool_height, pool_width, channels] | |
| pooled.append( | |
| tf.image.crop_and_resize( | |
| feature_maps[i], | |
| level_boxes, | |
| box_indices, | |
| self.pool_shape, | |
| method="bilinear", | |
| ) | |
| ) | |
| # Pack pooled features into one tensor | |
| pooled = tf.concat(pooled, axis=0) | |
| # Pack box_to_level mapping into one array and add another | |
| # column representing the order of pooled boxes | |
| box_to_level = tf.concat(box_to_level, axis=0) | |
| box_range = tf.expand_dims(tf.range(tf.shape(box_to_level)[0]), 1) | |
| box_to_level = tf.concat([tf.cast(box_to_level, tf.int32), box_range], axis=1) | |
| # Rearrange pooled features to match the order of the original boxes | |
| # Sort box_to_level by batch then box index | |
| # TF doesn't have a way to sort by two columns, so merge them and sort. | |
| sorting_tensor = box_to_level[:, 0] * 100000 + box_to_level[:, 1] | |
| ix = tf.nn.top_k(sorting_tensor, k=tf.shape(box_to_level)[0]).indices[::-1] | |
| ix = tf.gather(box_to_level[:, 2], ix) | |
| pooled = tf.gather(pooled, ix) | |
| # Re-add the batch dimension | |
| shape = tf.concat([tf.shape(boxes)[:2], tf.shape(pooled)[1:]], axis=0) | |
| pooled = tf.reshape(pooled, shape) | |
| return pooled | |
| def compute_output_shape(self, input_shape): | |
| return input_shape[0][:2] + self.pool_shape + (input_shape[2][-1],) | |
| ############################################################ | |
| # Detection Target Layer | |
| ############################################################ | |
| def overlaps_graph(boxes1, boxes2): | |
| """Computes IoU overlaps between two sets of boxes. | |
| boxes1, boxes2: [N, (y1, x1, y2, x2)]. | |
| """ | |
| # 1. Tile boxes2 and repeat boxes1. This allows us to compare | |
| # every boxes1 against every boxes2 without loops. | |
| # TF doesn't have an equivalent to np.repeat() so simulate it | |
| # using tf.tile() and tf.reshape. | |
| b1 = tf.reshape( | |
| tf.tile(tf.expand_dims(boxes1, 1), [1, 1, tf.shape(boxes2)[0]]), [-1, 4] | |
| ) | |
| b2 = tf.tile(boxes2, [tf.shape(boxes1)[0], 1]) | |
| # 2. Compute intersections | |
| b1_y1, b1_x1, b1_y2, b1_x2 = tf.split(b1, 4, axis=1) | |
| b2_y1, b2_x1, b2_y2, b2_x2 = tf.split(b2, 4, axis=1) | |
| y1 = tf.maximum(b1_y1, b2_y1) | |
| x1 = tf.maximum(b1_x1, b2_x1) | |
| y2 = tf.minimum(b1_y2, b2_y2) | |
| x2 = tf.minimum(b1_x2, b2_x2) | |
| intersection = tf.maximum(x2 - x1, 0) * tf.maximum(y2 - y1, 0) | |
| # 3. Compute unions | |
| b1_area = (b1_y2 - b1_y1) * (b1_x2 - b1_x1) | |
| b2_area = (b2_y2 - b2_y1) * (b2_x2 - b2_x1) | |
| union = b1_area + b2_area - intersection | |
| # 4. Compute IoU and reshape to [boxes1, boxes2] | |
| iou = intersection / union | |
| overlaps = tf.reshape(iou, [tf.shape(boxes1)[0], tf.shape(boxes2)[0]]) | |
| return overlaps | |
| def detection_targets_graph(proposals, gt_class_ids, gt_boxes, gt_masks, config): | |
| """Generates detection targets for one image. Subsamples proposals and | |
| generates target class IDs, bounding box deltas, and masks for each. | |
| Inputs: | |
| proposals: [POST_NMS_ROIS_TRAINING, (y1, x1, y2, x2)] in normalized coordinates. Might | |
| be zero padded if there are not enough proposals. | |
| gt_class_ids: [MAX_GT_INSTANCES] int class IDs | |
| gt_boxes: [MAX_GT_INSTANCES, (y1, x1, y2, x2)] in normalized coordinates. | |
| gt_masks: [height, width, MAX_GT_INSTANCES] of boolean type. | |
| Returns: Target ROIs and corresponding class IDs, bounding box shifts, | |
| and masks. | |
| rois: [TRAIN_ROIS_PER_IMAGE, (y1, x1, y2, x2)] in normalized coordinates | |
| class_ids: [TRAIN_ROIS_PER_IMAGE]. Integer class IDs. Zero padded. | |
| deltas: [TRAIN_ROIS_PER_IMAGE, (dy, dx, log(dh), log(dw))] | |
| masks: [TRAIN_ROIS_PER_IMAGE, height, width]. Masks cropped to bbox | |
| boundaries and resized to neural network output size. | |
| Note: Returned arrays might be zero padded if not enough target ROIs. | |
| """ | |
| # Assertions | |
| asserts = [ | |
| tf.Assert( | |
| tf.greater(tf.shape(proposals)[0], 0), [proposals], name="roi_assertion" | |
| ), | |
| ] | |
| with tf.control_dependencies(asserts): | |
| proposals = tf.identity(proposals) | |
| # Remove zero padding | |
| proposals, _ = trim_zeros_graph(proposals, name="trim_proposals") | |
| gt_boxes, non_zeros = trim_zeros_graph(gt_boxes, name="trim_gt_boxes") | |
| gt_class_ids = tf.boolean_mask(gt_class_ids, non_zeros, name="trim_gt_class_ids") | |
| gt_masks = tf.gather( | |
| gt_masks, tf.where(non_zeros)[:, 0], axis=2, name="trim_gt_masks" | |
| ) | |
| # Handle COCO crowds | |
| # A crowd box in COCO is a bounding box around several instances. Exclude | |
| # them from training. A crowd box is given a negative class ID. | |
| crowd_ix = tf.where(gt_class_ids < 0)[:, 0] | |
| non_crowd_ix = tf.where(gt_class_ids > 0)[:, 0] | |
| crowd_boxes = tf.gather(gt_boxes, crowd_ix) | |
| gt_class_ids = tf.gather(gt_class_ids, non_crowd_ix) | |
| gt_boxes = tf.gather(gt_boxes, non_crowd_ix) | |
| gt_masks = tf.gather(gt_masks, non_crowd_ix, axis=2) | |
| # Compute overlaps matrix [proposals, gt_boxes] | |
| overlaps = overlaps_graph(proposals, gt_boxes) | |
| # Compute overlaps with crowd boxes [proposals, crowd_boxes] | |
| crowd_overlaps = overlaps_graph(proposals, crowd_boxes) | |
| crowd_iou_max = tf.reduce_max(crowd_overlaps, axis=1) | |
| no_crowd_bool = crowd_iou_max < 0.001 | |
| # Determine positive and negative ROIs | |
| roi_iou_max = tf.reduce_max(overlaps, axis=1) | |
| # 1. Positive ROIs are those with >= 0.5 IoU with a GT box | |
| positive_roi_bool = roi_iou_max >= 0.5 | |
| positive_indices = tf.where(positive_roi_bool)[:, 0] | |
| # 2. Negative ROIs are those with < 0.5 with every GT box. Skip crowds. | |
| negative_indices = tf.where(tf.logical_and(roi_iou_max < 0.5, no_crowd_bool))[:, 0] | |
| # Subsample ROIs. Aim for 33% positive | |
| # Positive ROIs | |
| positive_count = int(config.TRAIN_ROIS_PER_IMAGE * config.ROI_POSITIVE_RATIO) | |
| positive_indices = tf.random_shuffle(positive_indices)[:positive_count] | |
| positive_count = tf.shape(positive_indices)[0] | |
| # Negative ROIs. Add enough to maintain positive:negative ratio. | |
| r = 1.0 / config.ROI_POSITIVE_RATIO | |
| negative_count = ( | |
| tf.cast(r * tf.cast(positive_count, tf.float32), tf.int32) - positive_count | |
| ) | |
| negative_indices = tf.random_shuffle(negative_indices)[:negative_count] | |
| # Gather selected ROIs | |
| positive_rois = tf.gather(proposals, positive_indices) | |
| negative_rois = tf.gather(proposals, negative_indices) | |
| # Assign positive ROIs to GT boxes. | |
| positive_overlaps = tf.gather(overlaps, positive_indices) | |
| roi_gt_box_assignment = tf.cond( | |
| tf.greater(tf.shape(positive_overlaps)[1], 0), | |
| true_fn=lambda: tf.argmax(positive_overlaps, axis=1), | |
| false_fn=lambda: tf.cast(tf.constant([]), tf.int64), | |
| ) | |
| roi_gt_boxes = tf.gather(gt_boxes, roi_gt_box_assignment) | |
| roi_gt_class_ids = tf.gather(gt_class_ids, roi_gt_box_assignment) | |
| # Compute bbox refinement for positive ROIs | |
| deltas = utils.box_refinement_graph(positive_rois, roi_gt_boxes) | |
| deltas /= config.BBOX_STD_DEV | |
| # Assign positive ROIs to GT masks | |
| # Permute masks to [N, height, width, 1] | |
| transposed_masks = tf.expand_dims(tf.transpose(gt_masks, [2, 0, 1]), -1) | |
| # Pick the right mask for each ROI | |
| roi_masks = tf.gather(transposed_masks, roi_gt_box_assignment) | |
| # Compute mask targets | |
| boxes = positive_rois | |
| if config.USE_MINI_MASK: | |
| # Transform ROI coordinates from normalized image space | |
| # to normalized mini-mask space. | |
| y1, x1, y2, x2 = tf.split(positive_rois, 4, axis=1) | |
| gt_y1, gt_x1, gt_y2, gt_x2 = tf.split(roi_gt_boxes, 4, axis=1) | |
| gt_h = gt_y2 - gt_y1 | |
| gt_w = gt_x2 - gt_x1 | |
| y1 = (y1 - gt_y1) / gt_h | |
| x1 = (x1 - gt_x1) / gt_w | |
| y2 = (y2 - gt_y1) / gt_h | |
| x2 = (x2 - gt_x1) / gt_w | |
| boxes = tf.concat([y1, x1, y2, x2], 1) | |
| box_ids = tf.range(0, tf.shape(roi_masks)[0]) | |
| masks = tf.image.crop_and_resize( | |
| tf.cast(roi_masks, tf.float32), boxes, box_ids, config.MASK_SHAPE | |
| ) | |
| # Remove the extra dimension from masks. | |
| masks = tf.squeeze(masks, axis=3) | |
| # Threshold mask pixels at 0.5 to have GT masks be 0 or 1 to use with | |
| # binary cross entropy loss. | |
| masks = tf.round(masks) | |
| # Append negative ROIs and pad bbox deltas and masks that | |
| # are not used for negative ROIs with zeros. | |
| rois = tf.concat([positive_rois, negative_rois], axis=0) | |
| N = tf.shape(negative_rois)[0] | |
| P = tf.maximum(config.TRAIN_ROIS_PER_IMAGE - tf.shape(rois)[0], 0) | |
| rois = tf.pad(rois, [(0, P), (0, 0)]) | |
| roi_gt_boxes = tf.pad(roi_gt_boxes, [(0, N + P), (0, 0)]) | |
| roi_gt_class_ids = tf.pad(roi_gt_class_ids, [(0, N + P)]) | |
| deltas = tf.pad(deltas, [(0, N + P), (0, 0)]) | |
| masks = tf.pad(masks, [[0, N + P], (0, 0), (0, 0)]) | |
| return rois, roi_gt_class_ids, deltas, masks | |
| class DetectionTargetLayer(KE.Layer): | |
| """Subsamples proposals and generates target box refinement, class_ids, | |
| and masks for each. | |
| Inputs: | |
| proposals: [batch, N, (y1, x1, y2, x2)] in normalized coordinates. Might | |
| be zero padded if there are not enough proposals. | |
| gt_class_ids: [batch, MAX_GT_INSTANCES] Integer class IDs. | |
| gt_boxes: [batch, MAX_GT_INSTANCES, (y1, x1, y2, x2)] in normalized | |
| coordinates. | |
| gt_masks: [batch, height, width, MAX_GT_INSTANCES] of boolean type | |
| Returns: Target ROIs and corresponding class IDs, bounding box shifts, | |
| and masks. | |
| rois: [batch, TRAIN_ROIS_PER_IMAGE, (y1, x1, y2, x2)] in normalized | |
| coordinates | |
| target_class_ids: [batch, TRAIN_ROIS_PER_IMAGE]. Integer class IDs. | |
| target_deltas: [batch, TRAIN_ROIS_PER_IMAGE, (dy, dx, log(dh), log(dw)] | |
| target_mask: [batch, TRAIN_ROIS_PER_IMAGE, height, width] | |
| Masks cropped to bbox boundaries and resized to neural | |
| network output size. | |
| Note: Returned arrays might be zero padded if not enough target ROIs. | |
| """ | |
| def __init__(self, config, **kwargs): | |
| super(DetectionTargetLayer, self).__init__(**kwargs) | |
| self.config = config | |
| def call(self, inputs): | |
| proposals = inputs[0] | |
| gt_class_ids = inputs[1] | |
| gt_boxes = inputs[2] | |
| gt_masks = inputs[3] | |
| # Slice the batch and run a graph for each slice | |
| # TODO: Rename target_bbox to target_deltas for clarity | |
| names = ["rois", "target_class_ids", "target_bbox", "target_mask"] | |
| outputs = utils.batch_slice( | |
| [proposals, gt_class_ids, gt_boxes, gt_masks], | |
| lambda w, x, y, z: detection_targets_graph(w, x, y, z, self.config), | |
| self.config.IMAGES_PER_GPU, | |
| names=names, | |
| ) | |
| return outputs | |
| def compute_output_shape(self, input_shape): | |
| return [ | |
| (None, self.config.TRAIN_ROIS_PER_IMAGE, 4), # rois | |
| (None, self.config.TRAIN_ROIS_PER_IMAGE), # class_ids | |
| (None, self.config.TRAIN_ROIS_PER_IMAGE, 4), # deltas | |
| ( | |
| None, | |
| self.config.TRAIN_ROIS_PER_IMAGE, | |
| self.config.MASK_SHAPE[0], | |
| self.config.MASK_SHAPE[1], | |
| ), # masks | |
| ] | |
| def compute_mask(self, inputs, mask=None): | |
| return [None, None, None, None] | |
| ############################################################ | |
| # Detection Layer | |
| ############################################################ | |
| def refine_detections_graph(rois, probs, deltas, window, config): | |
| """Refine classified proposals and filter overlaps and return final | |
| detections. | |
| Inputs: | |
| rois: [N, (y1, x1, y2, x2)] in normalized coordinates | |
| probs: [N, num_classes]. Class probabilities. | |
| deltas: [N, num_classes, (dy, dx, log(dh), log(dw))]. Class-specific | |
| bounding box deltas. | |
| window: (y1, x1, y2, x2) in normalized coordinates. The part of the image | |
| that contains the image excluding the padding. | |
| Returns detections shaped: [num_detections, (y1, x1, y2, x2, class_id, score)] where | |
| coordinates are normalized. | |
| """ | |
| # Class IDs per ROI | |
| class_ids = tf.argmax(probs, axis=1, output_type=tf.int32) | |
| # Class probability of the top class of each ROI | |
| indices = tf.stack([tf.range(probs.shape[0]), class_ids], axis=1) | |
| class_scores = tf.gather_nd(probs, indices) | |
| # Class-specific bounding box deltas | |
| deltas_specific = tf.gather_nd(deltas, indices) | |
| # Apply bounding box deltas | |
| # Shape: [boxes, (y1, x1, y2, x2)] in normalized coordinates | |
| refined_rois = apply_box_deltas_graph(rois, deltas_specific * config.BBOX_STD_DEV) | |
| # Clip boxes to image window | |
| refined_rois = clip_boxes_graph(refined_rois, window) | |
| # TODO: Filter out boxes with zero area | |
| # Filter out background boxes | |
| keep = tf.where(class_ids > 0)[:, 0] | |
| # Filter out low confidence boxes | |
| if config.DETECTION_MIN_CONFIDENCE: | |
| conf_keep = tf.where(class_scores >= config.DETECTION_MIN_CONFIDENCE)[:, 0] | |
| keep = tf.sets.set_intersection( | |
| tf.expand_dims(keep, 0), tf.expand_dims(conf_keep, 0) | |
| ) | |
| keep = tf.sparse_tensor_to_dense(keep)[0] | |
| # Apply per-class NMS | |
| # 1. Prepare variables | |
| pre_nms_class_ids = tf.gather(class_ids, keep) | |
| pre_nms_scores = tf.gather(class_scores, keep) | |
| pre_nms_rois = tf.gather(refined_rois, keep) | |
| unique_pre_nms_class_ids = tf.unique(pre_nms_class_ids)[0] | |
| def nms_keep_map(class_id): | |
| """Apply Non-Maximum Suppression on ROIs of the given class.""" | |
| # Indices of ROIs of the given class | |
| ixs = tf.where(tf.equal(pre_nms_class_ids, class_id))[:, 0] | |
| # Apply NMS | |
| class_keep = tf.image.non_max_suppression( | |
| tf.gather(pre_nms_rois, ixs), | |
| tf.gather(pre_nms_scores, ixs), | |
| max_output_size=config.DETECTION_MAX_INSTANCES, | |
| iou_threshold=config.DETECTION_NMS_THRESHOLD, | |
| ) | |
| # Map indices | |
| class_keep = tf.gather(keep, tf.gather(ixs, class_keep)) | |
| # Pad with -1 so returned tensors have the same shape | |
| gap = config.DETECTION_MAX_INSTANCES - tf.shape(class_keep)[0] | |
| class_keep = tf.pad(class_keep, [(0, gap)], mode="CONSTANT", constant_values=-1) | |
| # Set shape so map_fn() can infer result shape | |
| class_keep.set_shape([config.DETECTION_MAX_INSTANCES]) | |
| return class_keep | |
| # 2. Map over class IDs | |
| nms_keep = tf.map_fn(nms_keep_map, unique_pre_nms_class_ids, dtype=tf.int64) | |
| # 3. Merge results into one list, and remove -1 padding | |
| nms_keep = tf.reshape(nms_keep, [-1]) | |
| nms_keep = tf.gather(nms_keep, tf.where(nms_keep > -1)[:, 0]) | |
| # 4. Compute intersection between keep and nms_keep | |
| keep = tf.sets.set_intersection( | |
| tf.expand_dims(keep, 0), tf.expand_dims(nms_keep, 0) | |
| ) | |
| keep = tf.sparse_tensor_to_dense(keep)[0] | |
| # Keep top detections | |
| roi_count = config.DETECTION_MAX_INSTANCES | |
| class_scores_keep = tf.gather(class_scores, keep) | |
| num_keep = tf.minimum(tf.shape(class_scores_keep)[0], roi_count) | |
| top_ids = tf.nn.top_k(class_scores_keep, k=num_keep, sorted=True)[1] | |
| keep = tf.gather(keep, top_ids) | |
| # Arrange output as [N, (y1, x1, y2, x2, class_id, score)] | |
| # Coordinates are normalized. | |
| detections = tf.concat( | |
| [ | |
| tf.gather(refined_rois, keep), | |
| tf.to_float(tf.gather(class_ids, keep))[..., tf.newaxis], | |
| tf.gather(class_scores, keep)[..., tf.newaxis], | |
| ], | |
| axis=1, | |
| ) | |
| # Pad with zeros if detections < DETECTION_MAX_INSTANCES | |
| gap = config.DETECTION_MAX_INSTANCES - tf.shape(detections)[0] | |
| detections = tf.pad(detections, [(0, gap), (0, 0)], "CONSTANT") | |
| return detections | |
| class DetectionLayer(KE.Layer): | |
| """Takes classified proposal boxes and their bounding box deltas and | |
| returns the final detection boxes. | |
| Returns: | |
| [batch, num_detections, (y1, x1, y2, x2, class_id, class_score)] where | |
| coordinates are normalized. | |
| """ | |
| def __init__(self, config=None, **kwargs): | |
| super(DetectionLayer, self).__init__(**kwargs) | |
| self.config = config | |
| def call(self, inputs): | |
| rois = inputs[0] | |
| mrcnn_class = inputs[1] | |
| mrcnn_bbox = inputs[2] | |
| image_meta = inputs[3] | |
| # Get windows of images in normalized coordinates. Windows are the area | |
| # in the image that excludes the padding. | |
| # Use the shape of the first image in the batch to normalize the window | |
| # because we know that all images get resized to the same size. | |
| m = parse_image_meta_graph(image_meta) | |
| image_shape = m["image_shape"][0] | |
| window = norm_boxes_graph(m["window"], image_shape[:2]) | |
| # Run detection refinement graph on each item in the batch | |
| detections_batch = utils.batch_slice( | |
| [rois, mrcnn_class, mrcnn_bbox, window], | |
| lambda x, y, w, z: refine_detections_graph(x, y, w, z, self.config), | |
| self.config.IMAGES_PER_GPU, | |
| ) | |
| # Reshape output | |
| # [batch, num_detections, (y1, x1, y2, x2, class_id, class_score)] in | |
| # normalized coordinates | |
| return tf.reshape( | |
| detections_batch, | |
| [self.config.BATCH_SIZE, self.config.DETECTION_MAX_INSTANCES, 6], | |
| ) | |
| def compute_output_shape(self, input_shape): | |
| return (None, self.config.DETECTION_MAX_INSTANCES, 6) | |
| ############################################################ | |
| # Region Proposal Network (RPN) | |
| ############################################################ | |
| def rpn_graph(feature_map, anchors_per_location, anchor_stride): | |
| """Builds the computation graph of Region Proposal Network. | |
| feature_map: backbone features [batch, height, width, depth] | |
| anchors_per_location: number of anchors per pixel in the feature map | |
| anchor_stride: Controls the density of anchors. Typically 1 (anchors for | |
| every pixel in the feature map), or 2 (every other pixel). | |
| Returns: | |
| rpn_class_logits: [batch, H * W * anchors_per_location, 2] Anchor classifier logits (before softmax) | |
| rpn_probs: [batch, H * W * anchors_per_location, 2] Anchor classifier probabilities. | |
| rpn_bbox: [batch, H * W * anchors_per_location, (dy, dx, log(dh), log(dw))] Deltas to be | |
| applied to anchors. | |
| """ | |
| # TODO: check if stride of 2 causes alignment issues if the feature map | |
| # is not even. | |
| # Shared convolutional base of the RPN | |
| shared = KL.Conv2D( | |
| 512, | |
| (3, 3), | |
| padding="same", | |
| activation="relu", | |
| strides=anchor_stride, | |
| name="rpn_conv_shared", | |
| )(feature_map) | |
| # Anchor Score. [batch, height, width, anchors per location * 2]. | |
| x = KL.Conv2D( | |
| 2 * anchors_per_location, | |
| (1, 1), | |
| padding="valid", | |
| activation="linear", | |
| name="rpn_class_raw", | |
| )(shared) | |
| # Reshape to [batch, anchors, 2] | |
| rpn_class_logits = KL.Lambda(lambda t: tf.reshape(t, [tf.shape(t)[0], -1, 2]))(x) | |
| # Softmax on last dimension of BG/FG. | |
| rpn_probs = KL.Activation("softmax", name="rpn_class_xxx")(rpn_class_logits) | |
| # Bounding box refinement. [batch, H, W, anchors per location * depth] | |
| # where depth is [x, y, log(w), log(h)] | |
| x = KL.Conv2D( | |
| anchors_per_location * 4, | |
| (1, 1), | |
| padding="valid", | |
| activation="linear", | |
| name="rpn_bbox_pred", | |
| )(shared) | |
| # Reshape to [batch, anchors, 4] | |
| rpn_bbox = KL.Lambda(lambda t: tf.reshape(t, [tf.shape(t)[0], -1, 4]))(x) | |
| return [rpn_class_logits, rpn_probs, rpn_bbox] | |
| def build_rpn_model(anchor_stride, anchors_per_location, depth): | |
| """Builds a Keras model of the Region Proposal Network. | |
| It wraps the RPN graph so it can be used multiple times with shared | |
| weights. | |
| anchors_per_location: number of anchors per pixel in the feature map | |
| anchor_stride: Controls the density of anchors. Typically 1 (anchors for | |
| every pixel in the feature map), or 2 (every other pixel). | |
| depth: Depth of the backbone feature map. | |
| Returns a Keras Model object. The model outputs, when called, are: | |
| rpn_class_logits: [batch, H * W * anchors_per_location, 2] Anchor classifier logits (before softmax) | |
| rpn_probs: [batch, H * W * anchors_per_location, 2] Anchor classifier probabilities. | |
| rpn_bbox: [batch, H * W * anchors_per_location, (dy, dx, log(dh), log(dw))] Deltas to be | |
| applied to anchors. | |
| """ | |
| input_feature_map = KL.Input( | |
| shape=[None, None, depth], name="input_rpn_feature_map" | |
| ) | |
| outputs = rpn_graph(input_feature_map, anchors_per_location, anchor_stride) | |
| return KM.Model([input_feature_map], outputs, name="rpn_model") | |
| ############################################################ | |
| # Feature Pyramid Network Heads | |
| ############################################################ | |
| def fpn_classifier_graph( | |
| rois, | |
| feature_maps, | |
| image_meta, | |
| pool_size, | |
| num_classes, | |
| train_bn=True, | |
| fc_layers_size=1024, | |
| ): | |
| """Builds the computation graph of the feature pyramid network classifier | |
| and regressor heads. | |
| rois: [batch, num_rois, (y1, x1, y2, x2)] Proposal boxes in normalized | |
| coordinates. | |
| feature_maps: List of feature maps from different layers of the pyramid, | |
| [P2, P3, P4, P5]. Each has a different resolution. | |
| image_meta: [batch, (meta data)] Image details. See compose_image_meta() | |
| pool_size: The width of the square feature map generated from ROI Pooling. | |
| num_classes: number of classes, which determines the depth of the results | |
| train_bn: Boolean. Train or freeze Batch Norm layers | |
| fc_layers_size: Size of the 2 FC layers | |
| Returns: | |
| logits: [batch, num_rois, NUM_CLASSES] classifier logits (before softmax) | |
| probs: [batch, num_rois, NUM_CLASSES] classifier probabilities | |
| bbox_deltas: [batch, num_rois, NUM_CLASSES, (dy, dx, log(dh), log(dw))] Deltas to apply to | |
| proposal boxes | |
| """ | |
| # ROI Pooling | |
| # Shape: [batch, num_rois, POOL_SIZE, POOL_SIZE, channels] | |
| x = PyramidROIAlign([pool_size, pool_size], name="roi_align_classifier")( | |
| [rois, image_meta] + feature_maps | |
| ) | |
| # Two 1024 FC layers (implemented with Conv2D for consistency) | |
| x = KL.TimeDistributed( | |
| KL.Conv2D(fc_layers_size, (pool_size, pool_size), padding="valid"), | |
| name="mrcnn_class_conv1", | |
| )(x) | |
| x = KL.TimeDistributed(BatchNorm(), name="mrcnn_class_bn1")(x, training=train_bn) | |
| x = KL.Activation("relu")(x) | |
| x = KL.TimeDistributed(KL.Conv2D(fc_layers_size, (1, 1)), name="mrcnn_class_conv2")( | |
| x | |
| ) | |
| x = KL.TimeDistributed(BatchNorm(), name="mrcnn_class_bn2")(x, training=train_bn) | |
| x = KL.Activation("relu")(x) | |
| shared = KL.Lambda(lambda x: K.squeeze(K.squeeze(x, 3), 2), name="pool_squeeze")(x) | |
| # Classifier head | |
| mrcnn_class_logits = KL.TimeDistributed( | |
| KL.Dense(num_classes), name="mrcnn_class_logits" | |
| )(shared) | |
| mrcnn_probs = KL.TimeDistributed(KL.Activation("softmax"), name="mrcnn_class")( | |
| mrcnn_class_logits | |
| ) | |
| # BBox head | |
| # [batch, num_rois, NUM_CLASSES * (dy, dx, log(dh), log(dw))] | |
| x = KL.TimeDistributed( | |
| KL.Dense(num_classes * 4, activation="linear"), name="mrcnn_bbox_fc" | |
| )(shared) | |
| # Reshape to [batch, num_rois, NUM_CLASSES, (dy, dx, log(dh), log(dw))] | |
| s = K.int_shape(x) | |
| mrcnn_bbox = KL.Reshape((s[1], num_classes, 4), name="mrcnn_bbox")(x) | |
| return mrcnn_class_logits, mrcnn_probs, mrcnn_bbox | |
| def build_fpn_mask_graph( | |
| rois, feature_maps, image_meta, pool_size, num_classes, train_bn=True | |
| ): | |
| """Builds the computation graph of the mask head of Feature Pyramid Network. | |
| rois: [batch, num_rois, (y1, x1, y2, x2)] Proposal boxes in normalized | |
| coordinates. | |
| feature_maps: List of feature maps from different layers of the pyramid, | |
| [P2, P3, P4, P5]. Each has a different resolution. | |
| image_meta: [batch, (meta data)] Image details. See compose_image_meta() | |
| pool_size: The width of the square feature map generated from ROI Pooling. | |
| num_classes: number of classes, which determines the depth of the results | |
| train_bn: Boolean. Train or freeze Batch Norm layers | |
| Returns: Masks [batch, num_rois, MASK_POOL_SIZE, MASK_POOL_SIZE, NUM_CLASSES] | |
| """ | |
| # ROI Pooling | |
| # Shape: [batch, num_rois, MASK_POOL_SIZE, MASK_POOL_SIZE, channels] | |
| x = PyramidROIAlign([pool_size, pool_size], name="roi_align_mask")( | |
| [rois, image_meta] + feature_maps | |
| ) | |
| # Conv layers | |
| x = KL.TimeDistributed( | |
| KL.Conv2D(256, (3, 3), padding="same"), name="mrcnn_mask_conv1" | |
| )(x) | |
| x = KL.TimeDistributed(BatchNorm(), name="mrcnn_mask_bn1")(x, training=train_bn) | |
| x = KL.Activation("relu")(x) | |
| x = KL.TimeDistributed( | |
| KL.Conv2D(256, (3, 3), padding="same"), name="mrcnn_mask_conv2" | |
| )(x) | |
| x = KL.TimeDistributed(BatchNorm(), name="mrcnn_mask_bn2")(x, training=train_bn) | |
| x = KL.Activation("relu")(x) | |
| x = KL.TimeDistributed( | |
| KL.Conv2D(256, (3, 3), padding="same"), name="mrcnn_mask_conv3" | |
| )(x) | |
| x = KL.TimeDistributed(BatchNorm(), name="mrcnn_mask_bn3")(x, training=train_bn) | |
| x = KL.Activation("relu")(x) | |
| x = KL.TimeDistributed( | |
| KL.Conv2D(256, (3, 3), padding="same"), name="mrcnn_mask_conv4" | |
| )(x) | |
| x = KL.TimeDistributed(BatchNorm(), name="mrcnn_mask_bn4")(x, training=train_bn) | |
| x = KL.Activation("relu")(x) | |
| x = KL.TimeDistributed( | |
| KL.Conv2DTranspose(256, (2, 2), strides=2, activation="relu"), | |
| name="mrcnn_mask_deconv", | |
| )(x) | |
| x = KL.TimeDistributed( | |
| KL.Conv2D(num_classes, (1, 1), strides=1, activation="sigmoid"), | |
| name="mrcnn_mask", | |
| )(x) | |
| return x | |
| ############################################################ | |
| # Loss Functions | |
| ############################################################ | |
| def smooth_l1_loss(y_true, y_pred): | |
| """Implements Smooth-L1 loss. | |
| y_true and y_pred are typically: [N, 4], but could be any shape. | |
| """ | |
| diff = K.abs(y_true - y_pred) | |
| less_than_one = K.cast(K.less(diff, 1.0), "float32") | |
| loss = (less_than_one * 0.5 * diff**2) + (1 - less_than_one) * (diff - 0.5) | |
| return loss | |
| def rpn_class_loss_graph(rpn_match, rpn_class_logits): | |
| """RPN anchor classifier loss. | |
| rpn_match: [batch, anchors, 1]. Anchor match type. 1=positive, | |
| -1=negative, 0=neutral anchor. | |
| rpn_class_logits: [batch, anchors, 2]. RPN classifier logits for BG/FG. | |
| """ | |
| # Squeeze last dim to simplify | |
| rpn_match = tf.squeeze(rpn_match, -1) | |
| # Get anchor classes. Convert the -1/+1 match to 0/1 values. | |
| anchor_class = K.cast(K.equal(rpn_match, 1), tf.int32) | |
| # Positive and Negative anchors contribute to the loss, | |
| # but neutral anchors (match value = 0) don't. | |
| indices = tf.where(K.not_equal(rpn_match, 0)) | |
| # Pick rows that contribute to the loss and filter out the rest. | |
| rpn_class_logits = tf.gather_nd(rpn_class_logits, indices) | |
| anchor_class = tf.gather_nd(anchor_class, indices) | |
| # Cross entropy loss | |
| loss = K.sparse_categorical_crossentropy( | |
| target=anchor_class, output=rpn_class_logits, from_logits=True | |
| ) | |
| loss = K.switch(tf.size(loss) > 0, K.mean(loss), tf.constant(0.0)) | |
| return loss | |
| def rpn_bbox_loss_graph(config, target_bbox, rpn_match, rpn_bbox): | |
| """Return the RPN bounding box loss graph. | |
| config: the model config object. | |
| target_bbox: [batch, max positive anchors, (dy, dx, log(dh), log(dw))]. | |
| Uses 0 padding to fill in unsed bbox deltas. | |
| rpn_match: [batch, anchors, 1]. Anchor match type. 1=positive, | |
| -1=negative, 0=neutral anchor. | |
| rpn_bbox: [batch, anchors, (dy, dx, log(dh), log(dw))] | |
| """ | |
| # Positive anchors contribute to the loss, but negative and | |
| # neutral anchors (match value of 0 or -1) don't. | |
| rpn_match = K.squeeze(rpn_match, -1) | |
| indices = tf.where(K.equal(rpn_match, 1)) | |
| # Pick bbox deltas that contribute to the loss | |
| rpn_bbox = tf.gather_nd(rpn_bbox, indices) | |
| # Trim target bounding box deltas to the same length as rpn_bbox. | |
| batch_counts = K.sum(K.cast(K.equal(rpn_match, 1), tf.int32), axis=1) | |
| target_bbox = batch_pack_graph(target_bbox, batch_counts, config.IMAGES_PER_GPU) | |
| loss = smooth_l1_loss(target_bbox, rpn_bbox) | |
| loss = K.switch(tf.size(loss) > 0, K.mean(loss), tf.constant(0.0)) | |
| return loss | |
| def mrcnn_class_loss_graph(target_class_ids, pred_class_logits, active_class_ids): | |
| """Loss for the classifier head of Mask RCNN. | |
| target_class_ids: [batch, num_rois]. Integer class IDs. Uses zero | |
| padding to fill in the array. | |
| pred_class_logits: [batch, num_rois, num_classes] | |
| active_class_ids: [batch, num_classes]. Has a value of 1 for | |
| classes that are in the dataset of the image, and 0 | |
| for classes that are not in the dataset. | |
| """ | |
| # During model building, Keras calls this function with | |
| # target_class_ids of type float32. Unclear why. Cast it | |
| # to int to get around it. | |
| target_class_ids = tf.cast(target_class_ids, "int64") | |
| # Find predictions of classes that are not in the dataset. | |
| pred_class_ids = tf.argmax(pred_class_logits, axis=2) | |
| # TODO: Update this line to work with batch > 1. Right now it assumes all | |
| # images in a batch have the same active_class_ids | |
| pred_active = tf.gather(active_class_ids[0], pred_class_ids) | |
| # Loss | |
| loss = tf.nn.sparse_softmax_cross_entropy_with_logits( | |
| labels=target_class_ids, logits=pred_class_logits | |
| ) | |
| # Erase losses of predictions of classes that are not in the active | |
| # classes of the image. | |
| loss = loss * pred_active | |
| # Computer loss mean. Use only predictions that contribute | |
| # to the loss to get a correct mean. | |
| loss = tf.reduce_sum(loss) / tf.reduce_sum(pred_active) | |
| return loss | |
| def mrcnn_bbox_loss_graph(target_bbox, target_class_ids, pred_bbox): | |
| """Loss for Mask R-CNN bounding box refinement. | |
| target_bbox: [batch, num_rois, (dy, dx, log(dh), log(dw))] | |
| target_class_ids: [batch, num_rois]. Integer class IDs. | |
| pred_bbox: [batch, num_rois, num_classes, (dy, dx, log(dh), log(dw))] | |
| """ | |
| # Reshape to merge batch and roi dimensions for simplicity. | |
| target_class_ids = K.reshape(target_class_ids, (-1,)) | |
| target_bbox = K.reshape(target_bbox, (-1, 4)) | |
| pred_bbox = K.reshape(pred_bbox, (-1, K.int_shape(pred_bbox)[2], 4)) | |
| # Only positive ROIs contribute to the loss. And only | |
| # the right class_id of each ROI. Get their indices. | |
| positive_roi_ix = tf.where(target_class_ids > 0)[:, 0] | |
| positive_roi_class_ids = tf.cast( | |
| tf.gather(target_class_ids, positive_roi_ix), tf.int64 | |
| ) | |
| indices = tf.stack([positive_roi_ix, positive_roi_class_ids], axis=1) | |
| # Gather the deltas (predicted and true) that contribute to loss | |
| target_bbox = tf.gather(target_bbox, positive_roi_ix) | |
| pred_bbox = tf.gather_nd(pred_bbox, indices) | |
| # Smooth-L1 Loss | |
| loss = K.switch( | |
| tf.size(target_bbox) > 0, | |
| smooth_l1_loss(y_true=target_bbox, y_pred=pred_bbox), | |
| tf.constant(0.0), | |
| ) | |
| loss = K.mean(loss) | |
| return loss | |
| def mrcnn_mask_loss_graph(target_masks, target_class_ids, pred_masks): | |
| """Mask binary cross-entropy loss for the masks head. | |
| target_masks: [batch, num_rois, height, width]. | |
| A float32 tensor of values 0 or 1. Uses zero padding to fill array. | |
| target_class_ids: [batch, num_rois]. Integer class IDs. Zero padded. | |
| pred_masks: [batch, proposals, height, width, num_classes] float32 tensor | |
| with values from 0 to 1. | |
| """ | |
| # Reshape for simplicity. Merge first two dimensions into one. | |
| target_class_ids = K.reshape(target_class_ids, (-1,)) | |
| mask_shape = tf.shape(target_masks) | |
| target_masks = K.reshape(target_masks, (-1, mask_shape[2], mask_shape[3])) | |
| pred_shape = tf.shape(pred_masks) | |
| pred_masks = K.reshape( | |
| pred_masks, (-1, pred_shape[2], pred_shape[3], pred_shape[4]) | |
| ) | |
| # Permute predicted masks to [N, num_classes, height, width] | |
| pred_masks = tf.transpose(pred_masks, [0, 3, 1, 2]) | |
| # Only positive ROIs contribute to the loss. And only | |
| # the class specific mask of each ROI. | |
| positive_ix = tf.where(target_class_ids > 0)[:, 0] | |
| positive_class_ids = tf.cast(tf.gather(target_class_ids, positive_ix), tf.int64) | |
| indices = tf.stack([positive_ix, positive_class_ids], axis=1) | |
| # Gather the masks (predicted and true) that contribute to loss | |
| y_true = tf.gather(target_masks, positive_ix) | |
| y_pred = tf.gather_nd(pred_masks, indices) | |
| # Compute binary cross entropy. If no positive ROIs, then return 0. | |
| # shape: [batch, roi, num_classes] | |
| loss = K.switch( | |
| tf.size(y_true) > 0, | |
| K.binary_crossentropy(target=y_true, output=y_pred), | |
| tf.constant(0.0), | |
| ) | |
| loss = K.mean(loss) | |
| return loss | |
| ############################################################ | |
| # Data Generator | |
| ############################################################ | |
| def load_image_gt( | |
| dataset, config, image_id, augment=False, augmentation=None, use_mini_mask=False | |
| ): | |
| """Load and return ground truth data for an image (image, mask, bounding boxes). | |
| augment: (deprecated. Use augmentation instead). If true, apply random | |
| image augmentation. Currently, only horizontal flipping is offered. | |
| augmentation: Optional. An imgaug (https://github.com/aleju/imgaug) augmentation. | |
| For example, passing imgaug.augmenters.Fliplr(0.5) flips images | |
| right/left 50% of the time. | |
| use_mini_mask: If False, returns full-size masks that are the same height | |
| and width as the original image. These can be big, for example | |
| 1024x1024x100 (for 100 instances). Mini masks are smaller, typically, | |
| 224x224 and are generated by extracting the bounding box of the | |
| object and resizing it to MINI_MASK_SHAPE. | |
| Returns: | |
| image: [height, width, 3] | |
| shape: the original shape of the image before resizing and cropping. | |
| class_ids: [instance_count] Integer class IDs | |
| bbox: [instance_count, (y1, x1, y2, x2)] | |
| mask: [height, width, instance_count]. The height and width are those | |
| of the image unless use_mini_mask is True, in which case they are | |
| defined in MINI_MASK_SHAPE. | |
| """ | |
| # Load image and mask | |
| image = dataset.load_image(image_id) | |
| mask, class_ids = dataset.load_mask(image_id) | |
| original_shape = image.shape | |
| image, window, scale, padding, crop = utils.resize_image( | |
| image, | |
| min_dim=config.IMAGE_MIN_DIM, | |
| min_scale=config.IMAGE_MIN_SCALE, | |
| max_dim=config.IMAGE_MAX_DIM, | |
| mode=config.IMAGE_RESIZE_MODE, | |
| ) | |
| mask = utils.resize_mask(mask, scale, padding, crop) | |
| # Random horizontal flips. | |
| # TODO: will be removed in a future update in favor of augmentation | |
| if augment: | |
| logging.warning("'augment' is deprecated. Use 'augmentation' instead.") | |
| if random.randint(0, 1): | |
| image = np.fliplr(image) | |
| mask = np.fliplr(mask) | |
| # Augmentation | |
| # This requires the imgaug lib (https://github.com/aleju/imgaug) | |
| if augmentation: | |
| import imgaug | |
| # Augmenters that are safe to apply to masks | |
| # Some, such as Affine, have settings that make them unsafe, so always | |
| # test your augmentation on masks | |
| MASK_AUGMENTERS = [ | |
| "Sequential", | |
| "SomeOf", | |
| "OneOf", | |
| "Sometimes", | |
| "Fliplr", | |
| "Flipud", | |
| "CropAndPad", | |
| "Affine", | |
| "PiecewiseAffine", | |
| ] | |
| def hook(images, augmenter, parents, default): | |
| """Determines which augmenters to apply to masks.""" | |
| return augmenter.__class__.__name__ in MASK_AUGMENTERS | |
| # Store shapes before augmentation to compare | |
| image_shape = image.shape | |
| mask_shape = mask.shape | |
| # Make augmenters deterministic to apply similarly to images and masks | |
| det = augmentation.to_deterministic() | |
| image = det.augment_image(image) | |
| # Change mask to np.uint8 because imgaug doesn't support np.bool | |
| mask = det.augment_image( | |
| mask.astype(np.uint8), hooks=imgaug.HooksImages(activator=hook) | |
| ) | |
| # Verify that shapes didn't change | |
| assert image.shape == image_shape, "Augmentation shouldn't change image size" | |
| assert mask.shape == mask_shape, "Augmentation shouldn't change mask size" | |
| # Change mask back to bool | |
| mask = mask.astype(np.bool) | |
| # Note that some boxes might be all zeros if the corresponding mask got cropped out. | |
| # and here is to filter them out | |
| _idx = np.sum(mask, axis=(0, 1)) > 0 | |
| mask = mask[:, :, _idx] | |
| class_ids = class_ids[_idx] | |
| # Bounding boxes. Note that some boxes might be all zeros | |
| # if the corresponding mask got cropped out. | |
| # bbox: [num_instances, (y1, x1, y2, x2)] | |
| bbox = utils.extract_bboxes(mask) | |
| # Active classes | |
| # Different datasets have different classes, so track the | |
| # classes supported in the dataset of this image. | |
| active_class_ids = np.zeros([dataset.num_classes], dtype=np.int32) | |
| source_class_ids = dataset.source_class_ids[dataset.image_info[image_id]["source"]] | |
| active_class_ids[source_class_ids] = 1 | |
| # Resize masks to smaller size to reduce memory usage | |
| if use_mini_mask: | |
| mask = utils.minimize_mask(bbox, mask, config.MINI_MASK_SHAPE) | |
| # Image meta data | |
| image_meta = compose_image_meta( | |
| image_id, original_shape, image.shape, window, scale, active_class_ids | |
| ) | |
| return image, image_meta, class_ids, bbox, mask | |
| def build_detection_targets(rpn_rois, gt_class_ids, gt_boxes, gt_masks, config): | |
| """Generate targets for training Stage 2 classifier and mask heads. | |
| This is not used in normal training. It's useful for debugging or to train | |
| the Mask RCNN heads without using the RPN head. | |
| Inputs: | |
| rpn_rois: [N, (y1, x1, y2, x2)] proposal boxes. | |
| gt_class_ids: [instance count] Integer class IDs | |
| gt_boxes: [instance count, (y1, x1, y2, x2)] | |
| gt_masks: [height, width, instance count] Ground truth masks. Can be full | |
| size or mini-masks. | |
| Returns: | |
| rois: [TRAIN_ROIS_PER_IMAGE, (y1, x1, y2, x2)] | |
| class_ids: [TRAIN_ROIS_PER_IMAGE]. Integer class IDs. | |
| bboxes: [TRAIN_ROIS_PER_IMAGE, NUM_CLASSES, (y, x, log(h), log(w))]. Class-specific | |
| bbox refinements. | |
| masks: [TRAIN_ROIS_PER_IMAGE, height, width, NUM_CLASSES). Class specific masks cropped | |
| to bbox boundaries and resized to neural network output size. | |
| """ | |
| assert rpn_rois.shape[0] > 0 | |
| assert gt_class_ids.dtype == np.int32, "Expected int but got {}".format( | |
| gt_class_ids.dtype | |
| ) | |
| assert gt_boxes.dtype == np.int32, "Expected int but got {}".format(gt_boxes.dtype) | |
| assert gt_masks.dtype == np.bool_, "Expected bool but got {}".format(gt_masks.dtype) | |
| # It's common to add GT Boxes to ROIs but we don't do that here because | |
| # according to XinLei Chen's paper, it doesn't help. | |
| # Trim empty padding in gt_boxes and gt_masks parts | |
| instance_ids = np.where(gt_class_ids > 0)[0] | |
| assert instance_ids.shape[0] > 0, "Image must contain instances." | |
| gt_class_ids = gt_class_ids[instance_ids] | |
| gt_boxes = gt_boxes[instance_ids] | |
| gt_masks = gt_masks[:, :, instance_ids] | |
| # Compute areas of ROIs and ground truth boxes. | |
| rpn_roi_area = (rpn_rois[:, 2] - rpn_rois[:, 0]) * (rpn_rois[:, 3] - rpn_rois[:, 1]) | |
| gt_box_area = (gt_boxes[:, 2] - gt_boxes[:, 0]) * (gt_boxes[:, 3] - gt_boxes[:, 1]) | |
| # Compute overlaps [rpn_rois, gt_boxes] | |
| overlaps = np.zeros((rpn_rois.shape[0], gt_boxes.shape[0])) | |
| for i in range(overlaps.shape[1]): | |
| gt = gt_boxes[i] | |
| overlaps[:, i] = utils.compute_iou(gt, rpn_rois, gt_box_area[i], rpn_roi_area) | |
| # Assign ROIs to GT boxes | |
| rpn_roi_iou_argmax = np.argmax(overlaps, axis=1) | |
| rpn_roi_iou_max = overlaps[np.arange(overlaps.shape[0]), rpn_roi_iou_argmax] | |
| # GT box assigned to each ROI | |
| rpn_roi_gt_boxes = gt_boxes[rpn_roi_iou_argmax] | |
| rpn_roi_gt_class_ids = gt_class_ids[rpn_roi_iou_argmax] | |
| # Positive ROIs are those with >= 0.5 IoU with a GT box. | |
| fg_ids = np.where(rpn_roi_iou_max > 0.5)[0] | |
| # Negative ROIs are those with max IoU 0.1-0.5 (hard example mining) | |
| # TODO: To hard example mine or not to hard example mine, that's the question | |
| # bg_ids = np.where((rpn_roi_iou_max >= 0.1) & (rpn_roi_iou_max < 0.5))[0] | |
| bg_ids = np.where(rpn_roi_iou_max < 0.5)[0] | |
| # Subsample ROIs. Aim for 33% foreground. | |
| # FG | |
| fg_roi_count = int(config.TRAIN_ROIS_PER_IMAGE * config.ROI_POSITIVE_RATIO) | |
| if fg_ids.shape[0] > fg_roi_count: | |
| keep_fg_ids = np.random.choice(fg_ids, fg_roi_count, replace=False) | |
| else: | |
| keep_fg_ids = fg_ids | |
| # BG | |
| remaining = config.TRAIN_ROIS_PER_IMAGE - keep_fg_ids.shape[0] | |
| if bg_ids.shape[0] > remaining: | |
| keep_bg_ids = np.random.choice(bg_ids, remaining, replace=False) | |
| else: | |
| keep_bg_ids = bg_ids | |
| # Combine indices of ROIs to keep | |
| keep = np.concatenate([keep_fg_ids, keep_bg_ids]) | |
| # Need more? | |
| remaining = config.TRAIN_ROIS_PER_IMAGE - keep.shape[0] | |
| if remaining > 0: | |
| # Looks like we don't have enough samples to maintain the desired | |
| # balance. Reduce requirements and fill in the rest. This is | |
| # likely different from the Mask RCNN paper. | |
| # There is a small chance we have neither fg nor bg samples. | |
| if keep.shape[0] == 0: | |
| # Pick bg regions with easier IoU threshold | |
| bg_ids = np.where(rpn_roi_iou_max < 0.5)[0] | |
| assert bg_ids.shape[0] >= remaining | |
| keep_bg_ids = np.random.choice(bg_ids, remaining, replace=False) | |
| assert keep_bg_ids.shape[0] == remaining | |
| keep = np.concatenate([keep, keep_bg_ids]) | |
| else: | |
| # Fill the rest with repeated bg rois. | |
| keep_extra_ids = np.random.choice(keep_bg_ids, remaining, replace=True) | |
| keep = np.concatenate([keep, keep_extra_ids]) | |
| assert ( | |
| keep.shape[0] == config.TRAIN_ROIS_PER_IMAGE | |
| ), "keep doesn't match ROI batch size {}, {}".format( | |
| keep.shape[0], config.TRAIN_ROIS_PER_IMAGE | |
| ) | |
| # Reset the gt boxes assigned to BG ROIs. | |
| rpn_roi_gt_boxes[keep_bg_ids, :] = 0 | |
| rpn_roi_gt_class_ids[keep_bg_ids] = 0 | |
| # For each kept ROI, assign a class_id, and for FG ROIs also add bbox refinement. | |
| rois = rpn_rois[keep] | |
| roi_gt_boxes = rpn_roi_gt_boxes[keep] | |
| roi_gt_class_ids = rpn_roi_gt_class_ids[keep] | |
| roi_gt_assignment = rpn_roi_iou_argmax[keep] | |
| # Class-aware bbox deltas. [y, x, log(h), log(w)] | |
| bboxes = np.zeros( | |
| (config.TRAIN_ROIS_PER_IMAGE, config.NUM_CLASSES, 4), dtype=np.float32 | |
| ) | |
| pos_ids = np.where(roi_gt_class_ids > 0)[0] | |
| bboxes[pos_ids, roi_gt_class_ids[pos_ids]] = utils.box_refinement( | |
| rois[pos_ids], roi_gt_boxes[pos_ids, :4] | |
| ) | |
| # Normalize bbox refinements | |
| bboxes /= config.BBOX_STD_DEV | |
| # Generate class-specific target masks | |
| masks = np.zeros( | |
| ( | |
| config.TRAIN_ROIS_PER_IMAGE, | |
| config.MASK_SHAPE[0], | |
| config.MASK_SHAPE[1], | |
| config.NUM_CLASSES, | |
| ), | |
| dtype=np.float32, | |
| ) | |
| for i in pos_ids: | |
| class_id = roi_gt_class_ids[i] | |
| assert class_id > 0, "class id must be greater than 0" | |
| gt_id = roi_gt_assignment[i] | |
| class_mask = gt_masks[:, :, gt_id] | |
| if config.USE_MINI_MASK: | |
| # Create a mask placeholder, the size of the image | |
| placeholder = np.zeros(config.IMAGE_SHAPE[:2], dtype=bool) | |
| # GT box | |
| gt_y1, gt_x1, gt_y2, gt_x2 = gt_boxes[gt_id] | |
| gt_w = gt_x2 - gt_x1 | |
| gt_h = gt_y2 - gt_y1 | |
| # Resize mini mask to size of GT box | |
| placeholder[gt_y1:gt_y2, gt_x1:gt_x2] = np.round( | |
| utils.resize(class_mask, (gt_h, gt_w)) | |
| ).astype(bool) | |
| # Place the mini batch in the placeholder | |
| class_mask = placeholder | |
| # Pick part of the mask and resize it | |
| y1, x1, y2, x2 = rois[i].astype(np.int32) | |
| m = class_mask[y1:y2, x1:x2] | |
| mask = utils.resize(m, config.MASK_SHAPE) | |
| masks[i, :, :, class_id] = mask | |
| return rois, roi_gt_class_ids, bboxes, masks | |
| def build_rpn_targets(image_shape, anchors, gt_class_ids, gt_boxes, config): | |
| """Given the anchors and GT boxes, compute overlaps and identify positive | |
| anchors and deltas to refine them to match their corresponding GT boxes. | |
| anchors: [num_anchors, (y1, x1, y2, x2)] | |
| gt_class_ids: [num_gt_boxes] Integer class IDs. | |
| gt_boxes: [num_gt_boxes, (y1, x1, y2, x2)] | |
| Returns: | |
| rpn_match: [N] (int32) matches between anchors and GT boxes. | |
| 1 = positive anchor, -1 = negative anchor, 0 = neutral | |
| rpn_bbox: [N, (dy, dx, log(dh), log(dw))] Anchor bbox deltas. | |
| """ | |
| # RPN Match: 1 = positive anchor, -1 = negative anchor, 0 = neutral | |
| rpn_match = np.zeros([anchors.shape[0]], dtype=np.int32) | |
| # RPN bounding boxes: [max anchors per image, (dy, dx, log(dh), log(dw))] | |
| rpn_bbox = np.zeros((config.RPN_TRAIN_ANCHORS_PER_IMAGE, 4)) | |
| # Handle COCO crowds | |
| # A crowd box in COCO is a bounding box around several instances. Exclude | |
| # them from training. A crowd box is given a negative class ID. | |
| crowd_ix = np.where(gt_class_ids < 0)[0] | |
| if crowd_ix.shape[0] > 0: | |
| # Filter out crowds from ground truth class IDs and boxes | |
| non_crowd_ix = np.where(gt_class_ids > 0)[0] | |
| crowd_boxes = gt_boxes[crowd_ix] | |
| gt_class_ids = gt_class_ids[non_crowd_ix] | |
| gt_boxes = gt_boxes[non_crowd_ix] | |
| # Compute overlaps with crowd boxes [anchors, crowds] | |
| crowd_overlaps = utils.compute_overlaps(anchors, crowd_boxes) | |
| crowd_iou_max = np.amax(crowd_overlaps, axis=1) | |
| no_crowd_bool = crowd_iou_max < 0.001 | |
| else: | |
| # All anchors don't intersect a crowd | |
| no_crowd_bool = np.ones([anchors.shape[0]], dtype=bool) | |
| # Compute overlaps [num_anchors, num_gt_boxes] | |
| overlaps = utils.compute_overlaps(anchors, gt_boxes) | |
| # Match anchors to GT Boxes | |
| # If an anchor overlaps a GT box with IoU >= 0.7 then it's positive. | |
| # If an anchor overlaps a GT box with IoU < 0.3 then it's negative. | |
| # Neutral anchors are those that don't match the conditions above, | |
| # and they don't influence the loss function. | |
| # However, don't keep any GT box unmatched (rare, but happens). Instead, | |
| # match it to the closest anchor (even if its max IoU is < 0.3). | |
| # | |
| # 1. Set negative anchors first. They get overwritten below if a GT box is | |
| # matched to them. Skip boxes in crowd areas. | |
| anchor_iou_argmax = np.argmax(overlaps, axis=1) | |
| anchor_iou_max = overlaps[np.arange(overlaps.shape[0]), anchor_iou_argmax] | |
| rpn_match[(anchor_iou_max < 0.3) & (no_crowd_bool)] = -1 | |
| # 2. Set an anchor for each GT box (regardless of IoU value). | |
| # If multiple anchors have the same IoU match all of them | |
| gt_iou_argmax = np.argwhere(overlaps == np.max(overlaps, axis=0))[:, 0] | |
| rpn_match[gt_iou_argmax] = 1 | |
| # 3. Set anchors with high overlap as positive. | |
| rpn_match[anchor_iou_max >= 0.7] = 1 | |
| # Subsample to balance positive and negative anchors | |
| # Don't let positives be more than half the anchors | |
| ids = np.where(rpn_match == 1)[0] | |
| extra = len(ids) - (config.RPN_TRAIN_ANCHORS_PER_IMAGE // 2) | |
| if extra > 0: | |
| # Reset the extra ones to neutral | |
| ids = np.random.choice(ids, extra, replace=False) | |
| rpn_match[ids] = 0 | |
| # Same for negative proposals | |
| ids = np.where(rpn_match == -1)[0] | |
| extra = len(ids) - (config.RPN_TRAIN_ANCHORS_PER_IMAGE - np.sum(rpn_match == 1)) | |
| if extra > 0: | |
| # Rest the extra ones to neutral | |
| ids = np.random.choice(ids, extra, replace=False) | |
| rpn_match[ids] = 0 | |
| # For positive anchors, compute shift and scale needed to transform them | |
| # to match the corresponding GT boxes. | |
| ids = np.where(rpn_match == 1)[0] | |
| ix = 0 # index into rpn_bbox | |
| # TODO: use box_refinement() rather than duplicating the code here | |
| for i, a in zip(ids, anchors[ids]): | |
| # Closest gt box (it might have IoU < 0.7) | |
| gt = gt_boxes[anchor_iou_argmax[i]] | |
| # Convert coordinates to center plus width/height. | |
| # GT Box | |
| gt_h = gt[2] - gt[0] | |
| gt_w = gt[3] - gt[1] | |
| gt_center_y = gt[0] + 0.5 * gt_h | |
| gt_center_x = gt[1] + 0.5 * gt_w | |
| # Anchor | |
| a_h = a[2] - a[0] | |
| a_w = a[3] - a[1] | |
| a_center_y = a[0] + 0.5 * a_h | |
| a_center_x = a[1] + 0.5 * a_w | |
| # Compute the bbox refinement that the RPN should predict. | |
| rpn_bbox[ix] = [ | |
| (gt_center_y - a_center_y) / a_h, | |
| (gt_center_x - a_center_x) / a_w, | |
| np.log(gt_h / a_h), | |
| np.log(gt_w / a_w), | |
| ] | |
| # Normalize | |
| rpn_bbox[ix] /= config.RPN_BBOX_STD_DEV | |
| ix += 1 | |
| return rpn_match, rpn_bbox | |
| def generate_random_rois(image_shape, count, gt_class_ids, gt_boxes): | |
| """Generates ROI proposals similar to what a region proposal network | |
| would generate. | |
| image_shape: [Height, Width, Depth] | |
| count: Number of ROIs to generate | |
| gt_class_ids: [N] Integer ground truth class IDs | |
| gt_boxes: [N, (y1, x1, y2, x2)] Ground truth boxes in pixels. | |
| Returns: [count, (y1, x1, y2, x2)] ROI boxes in pixels. | |
| """ | |
| # placeholder | |
| rois = np.zeros((count, 4), dtype=np.int32) | |
| # Generate random ROIs around GT boxes (90% of count) | |
| rois_per_box = int(0.9 * count / gt_boxes.shape[0]) | |
| for i in range(gt_boxes.shape[0]): | |
| gt_y1, gt_x1, gt_y2, gt_x2 = gt_boxes[i] | |
| h = gt_y2 - gt_y1 | |
| w = gt_x2 - gt_x1 | |
| # random boundaries | |
| r_y1 = max(gt_y1 - h, 0) | |
| r_y2 = min(gt_y2 + h, image_shape[0]) | |
| r_x1 = max(gt_x1 - w, 0) | |
| r_x2 = min(gt_x2 + w, image_shape[1]) | |
| # To avoid generating boxes with zero area, we generate double what | |
| # we need and filter out the extra. If we get fewer valid boxes | |
| # than we need, we loop and try again. | |
| while True: | |
| y1y2 = np.random.randint(r_y1, r_y2, (rois_per_box * 2, 2)) | |
| x1x2 = np.random.randint(r_x1, r_x2, (rois_per_box * 2, 2)) | |
| # Filter out zero area boxes | |
| threshold = 1 | |
| y1y2 = y1y2[np.abs(y1y2[:, 0] - y1y2[:, 1]) >= threshold][:rois_per_box] | |
| x1x2 = x1x2[np.abs(x1x2[:, 0] - x1x2[:, 1]) >= threshold][:rois_per_box] | |
| if y1y2.shape[0] == rois_per_box and x1x2.shape[0] == rois_per_box: | |
| break | |
| # Sort on axis 1 to ensure x1 <= x2 and y1 <= y2 and then reshape | |
| # into x1, y1, x2, y2 order | |
| x1, x2 = np.split(np.sort(x1x2, axis=1), 2, axis=1) | |
| y1, y2 = np.split(np.sort(y1y2, axis=1), 2, axis=1) | |
| box_rois = np.hstack([y1, x1, y2, x2]) | |
| rois[rois_per_box * i : rois_per_box * (i + 1)] = box_rois | |
| # Generate random ROIs anywhere in the image (10% of count) | |
| remaining_count = count - (rois_per_box * gt_boxes.shape[0]) | |
| # To avoid generating boxes with zero area, we generate double what | |
| # we need and filter out the extra. If we get fewer valid boxes | |
| # than we need, we loop and try again. | |
| while True: | |
| y1y2 = np.random.randint(0, image_shape[0], (remaining_count * 2, 2)) | |
| x1x2 = np.random.randint(0, image_shape[1], (remaining_count * 2, 2)) | |
| # Filter out zero area boxes | |
| threshold = 1 | |
| y1y2 = y1y2[np.abs(y1y2[:, 0] - y1y2[:, 1]) >= threshold][:remaining_count] | |
| x1x2 = x1x2[np.abs(x1x2[:, 0] - x1x2[:, 1]) >= threshold][:remaining_count] | |
| if y1y2.shape[0] == remaining_count and x1x2.shape[0] == remaining_count: | |
| break | |
| # Sort on axis 1 to ensure x1 <= x2 and y1 <= y2 and then reshape | |
| # into x1, y1, x2, y2 order | |
| x1, x2 = np.split(np.sort(x1x2, axis=1), 2, axis=1) | |
| y1, y2 = np.split(np.sort(y1y2, axis=1), 2, axis=1) | |
| global_rois = np.hstack([y1, x1, y2, x2]) | |
| rois[-remaining_count:] = global_rois | |
| return rois | |
| def data_generator( | |
| dataset, | |
| config, | |
| shuffle=True, | |
| augment=False, | |
| augmentation=None, | |
| random_rois=0, | |
| batch_size=1, | |
| detection_targets=False, | |
| no_augmentation_sources=None, | |
| ): | |
| """A generator that returns images and corresponding target class ids, | |
| bounding box deltas, and masks. | |
| dataset: The Dataset object to pick data from | |
| config: The model config object | |
| shuffle: If True, shuffles the samples before every epoch | |
| augment: (deprecated. Use augmentation instead). If true, apply random | |
| image augmentation. Currently, only horizontal flipping is offered. | |
| augmentation: Optional. An imgaug (https://github.com/aleju/imgaug) augmentation. | |
| For example, passing imgaug.augmenters.Fliplr(0.5) flips images | |
| right/left 50% of the time. | |
| random_rois: If > 0 then generate proposals to be used to train the | |
| network classifier and mask heads. Useful if training | |
| the Mask RCNN part without the RPN. | |
| batch_size: How many images to return in each call | |
| detection_targets: If True, generate detection targets (class IDs, bbox | |
| deltas, and masks). Typically for debugging or visualizations because | |
| in trainig detection targets are generated by DetectionTargetLayer. | |
| no_augmentation_sources: Optional. List of sources to exclude for | |
| augmentation. A source is string that identifies a dataset and is | |
| defined in the Dataset class. | |
| Returns a Python generator. Upon calling next() on it, the | |
| generator returns two lists, inputs and outputs. The contents | |
| of the lists differs depending on the received arguments: | |
| inputs list: | |
| - images: [batch, H, W, C] | |
| - image_meta: [batch, (meta data)] Image details. See compose_image_meta() | |
| - rpn_match: [batch, N] Integer (1=positive anchor, -1=negative, 0=neutral) | |
| - rpn_bbox: [batch, N, (dy, dx, log(dh), log(dw))] Anchor bbox deltas. | |
| - gt_class_ids: [batch, MAX_GT_INSTANCES] Integer class IDs | |
| - gt_boxes: [batch, MAX_GT_INSTANCES, (y1, x1, y2, x2)] | |
| - gt_masks: [batch, height, width, MAX_GT_INSTANCES]. The height and width | |
| are those of the image unless use_mini_mask is True, in which | |
| case they are defined in MINI_MASK_SHAPE. | |
| outputs list: Usually empty in regular training. But if detection_targets | |
| is True then the outputs list contains target class_ids, bbox deltas, | |
| and masks. | |
| """ | |
| b = 0 # batch item index | |
| image_index = -1 | |
| image_ids = np.copy(dataset.image_ids) | |
| error_count = 0 | |
| no_augmentation_sources = no_augmentation_sources or [] | |
| # Anchors | |
| # [anchor_count, (y1, x1, y2, x2)] | |
| backbone_shapes = compute_backbone_shapes(config, config.IMAGE_SHAPE) | |
| anchors = utils.generate_pyramid_anchors( | |
| config.RPN_ANCHOR_SCALES, | |
| config.RPN_ANCHOR_RATIOS, | |
| backbone_shapes, | |
| config.BACKBONE_STRIDES, | |
| config.RPN_ANCHOR_STRIDE, | |
| ) | |
| # Keras requires a generator to run indefinitely. | |
| while True: | |
| try: | |
| # Increment index to pick next image. Shuffle if at the start of an epoch. | |
| image_index = (image_index + 1) % len(image_ids) | |
| if shuffle and image_index == 0: | |
| np.random.shuffle(image_ids) | |
| # Get GT bounding boxes and masks for image. | |
| image_id = image_ids[image_index] | |
| # If the image source is not to be augmented pass None as augmentation | |
| if dataset.image_info[image_id]["source"] in no_augmentation_sources: | |
| image, image_meta, gt_class_ids, gt_boxes, gt_masks = load_image_gt( | |
| dataset, | |
| config, | |
| image_id, | |
| augment=augment, | |
| augmentation=None, | |
| use_mini_mask=config.USE_MINI_MASK, | |
| ) | |
| else: | |
| image, image_meta, gt_class_ids, gt_boxes, gt_masks = load_image_gt( | |
| dataset, | |
| config, | |
| image_id, | |
| augment=augment, | |
| augmentation=augmentation, | |
| use_mini_mask=config.USE_MINI_MASK, | |
| ) | |
| # Skip images that have no instances. This can happen in cases | |
| # where we train on a subset of classes and the image doesn't | |
| # have any of the classes we care about. | |
| if not np.any(gt_class_ids > 0): | |
| continue | |
| # RPN Targets | |
| rpn_match, rpn_bbox = build_rpn_targets( | |
| image.shape, anchors, gt_class_ids, gt_boxes, config | |
| ) | |
| # Mask R-CNN Targets | |
| if random_rois: | |
| rpn_rois = generate_random_rois( | |
| image.shape, random_rois, gt_class_ids, gt_boxes | |
| ) | |
| if detection_targets: | |
| ( | |
| rois, | |
| mrcnn_class_ids, | |
| mrcnn_bbox, | |
| mrcnn_mask, | |
| ) = build_detection_targets( | |
| rpn_rois, gt_class_ids, gt_boxes, gt_masks, config | |
| ) | |
| # Init batch arrays | |
| if b == 0: | |
| batch_image_meta = np.zeros( | |
| (batch_size,) + image_meta.shape, dtype=image_meta.dtype | |
| ) | |
| batch_rpn_match = np.zeros( | |
| [batch_size, anchors.shape[0], 1], dtype=rpn_match.dtype | |
| ) | |
| batch_rpn_bbox = np.zeros( | |
| [batch_size, config.RPN_TRAIN_ANCHORS_PER_IMAGE, 4], | |
| dtype=rpn_bbox.dtype, | |
| ) | |
| batch_images = np.zeros((batch_size,) + image.shape, dtype=np.float32) | |
| batch_gt_class_ids = np.zeros( | |
| (batch_size, config.MAX_GT_INSTANCES), dtype=np.int32 | |
| ) | |
| batch_gt_boxes = np.zeros( | |
| (batch_size, config.MAX_GT_INSTANCES, 4), dtype=np.int32 | |
| ) | |
| batch_gt_masks = np.zeros( | |
| ( | |
| batch_size, | |
| gt_masks.shape[0], | |
| gt_masks.shape[1], | |
| config.MAX_GT_INSTANCES, | |
| ), | |
| dtype=gt_masks.dtype, | |
| ) | |
| if random_rois: | |
| batch_rpn_rois = np.zeros( | |
| (batch_size, rpn_rois.shape[0], 4), dtype=rpn_rois.dtype | |
| ) | |
| if detection_targets: | |
| batch_rois = np.zeros( | |
| (batch_size,) + rois.shape, dtype=rois.dtype | |
| ) | |
| batch_mrcnn_class_ids = np.zeros( | |
| (batch_size,) + mrcnn_class_ids.shape, | |
| dtype=mrcnn_class_ids.dtype, | |
| ) | |
| batch_mrcnn_bbox = np.zeros( | |
| (batch_size,) + mrcnn_bbox.shape, dtype=mrcnn_bbox.dtype | |
| ) | |
| batch_mrcnn_mask = np.zeros( | |
| (batch_size,) + mrcnn_mask.shape, dtype=mrcnn_mask.dtype | |
| ) | |
| # If more instances than fits in the array, sub-sample from them. | |
| if gt_boxes.shape[0] > config.MAX_GT_INSTANCES: | |
| ids = np.random.choice( | |
| np.arange(gt_boxes.shape[0]), config.MAX_GT_INSTANCES, replace=False | |
| ) | |
| gt_class_ids = gt_class_ids[ids] | |
| gt_boxes = gt_boxes[ids] | |
| gt_masks = gt_masks[:, :, ids] | |
| # Add to batch | |
| batch_image_meta[b] = image_meta | |
| batch_rpn_match[b] = rpn_match[:, np.newaxis] | |
| batch_rpn_bbox[b] = rpn_bbox | |
| batch_images[b] = mold_image(image.astype(np.float32), config) | |
| batch_gt_class_ids[b, : gt_class_ids.shape[0]] = gt_class_ids | |
| batch_gt_boxes[b, : gt_boxes.shape[0]] = gt_boxes | |
| batch_gt_masks[b, :, :, : gt_masks.shape[-1]] = gt_masks | |
| if random_rois: | |
| batch_rpn_rois[b] = rpn_rois | |
| if detection_targets: | |
| batch_rois[b] = rois | |
| batch_mrcnn_class_ids[b] = mrcnn_class_ids | |
| batch_mrcnn_bbox[b] = mrcnn_bbox | |
| batch_mrcnn_mask[b] = mrcnn_mask | |
| b += 1 | |
| # Batch full? | |
| if b >= batch_size: | |
| inputs = [ | |
| batch_images, | |
| batch_image_meta, | |
| batch_rpn_match, | |
| batch_rpn_bbox, | |
| batch_gt_class_ids, | |
| batch_gt_boxes, | |
| batch_gt_masks, | |
| ] | |
| outputs = [] | |
| if random_rois: | |
| inputs.extend([batch_rpn_rois]) | |
| if detection_targets: | |
| inputs.extend([batch_rois]) | |
| # Keras requires that output and targets have the same number of dimensions | |
| batch_mrcnn_class_ids = np.expand_dims( | |
| batch_mrcnn_class_ids, -1 | |
| ) | |
| outputs.extend( | |
| [batch_mrcnn_class_ids, batch_mrcnn_bbox, batch_mrcnn_mask] | |
| ) | |
| yield inputs, outputs | |
| # start a new batch | |
| b = 0 | |
| except (GeneratorExit, KeyboardInterrupt): | |
| raise | |
| except: | |
| # Log it and skip the image | |
| logging.exception( | |
| "Error processing image {}".format(dataset.image_info[image_id]) | |
| ) | |
| error_count += 1 | |
| if error_count > 5: | |
| raise | |
| ############################################################ | |
| # MaskRCNN Class | |
| ############################################################ | |
| class MaskRCNN: | |
| """Encapsulates the Mask RCNN model functionality. | |
| The actual Keras model is in the keras_model property. | |
| """ | |
| def __init__(self, mode, config, model_dir): | |
| """ | |
| mode: Either "training" or "inference" | |
| config: A Sub-class of the Config class | |
| model_dir: Directory to save training logs and trained weights | |
| """ | |
| assert mode in ["training", "inference"] | |
| self.mode = mode | |
| self.config = config | |
| self.model_dir = model_dir | |
| self.set_log_dir() | |
| self.keras_model = self.build(mode=mode, config=config) | |
| def build(self, mode, config): | |
| """Build Mask R-CNN architecture. | |
| input_shape: The shape of the input image. | |
| mode: Either "training" or "inference". The inputs and | |
| outputs of the model differ accordingly. | |
| """ | |
| assert mode in ["training", "inference"] | |
| # Image size must be dividable by 2 multiple times | |
| h, w = config.IMAGE_SHAPE[:2] | |
| if h / 2**6 != int(h / 2**6) or w / 2**6 != int(w / 2**6): | |
| raise Exception( | |
| "Image size must be dividable by 2 at least 6 times " | |
| "to avoid fractions when downscaling and upscaling." | |
| "For example, use 256, 320, 384, 448, 512, ... etc. " | |
| ) | |
| # Inputs | |
| input_image = KL.Input( | |
| shape=[None, None, config.IMAGE_SHAPE[2]], name="input_image" | |
| ) | |
| input_image_meta = KL.Input( | |
| shape=[config.IMAGE_META_SIZE], name="input_image_meta" | |
| ) | |
| if mode == "training": | |
| # RPN GT | |
| input_rpn_match = KL.Input( | |
| shape=[None, 1], name="input_rpn_match", dtype=tf.int32 | |
| ) | |
| input_rpn_bbox = KL.Input( | |
| shape=[None, 4], name="input_rpn_bbox", dtype=tf.float32 | |
| ) | |
| # Detection GT (class IDs, bounding boxes, and masks) | |
| # 1. GT Class IDs (zero padded) | |
| input_gt_class_ids = KL.Input( | |
| shape=[None], name="input_gt_class_ids", dtype=tf.int32 | |
| ) | |
| # 2. GT Boxes in pixels (zero padded) | |
| # [batch, MAX_GT_INSTANCES, (y1, x1, y2, x2)] in image coordinates | |
| input_gt_boxes = KL.Input( | |
| shape=[None, 4], name="input_gt_boxes", dtype=tf.float32 | |
| ) | |
| # Normalize coordinates | |
| gt_boxes = KL.Lambda( | |
| lambda x: norm_boxes_graph(x, K.shape(input_image)[1:3]) | |
| )(input_gt_boxes) | |
| # 3. GT Masks (zero padded) | |
| # [batch, height, width, MAX_GT_INSTANCES] | |
| if config.USE_MINI_MASK: | |
| input_gt_masks = KL.Input( | |
| shape=[config.MINI_MASK_SHAPE[0], config.MINI_MASK_SHAPE[1], None], | |
| name="input_gt_masks", | |
| dtype=bool, | |
| ) | |
| else: | |
| input_gt_masks = KL.Input( | |
| shape=[config.IMAGE_SHAPE[0], config.IMAGE_SHAPE[1], None], | |
| name="input_gt_masks", | |
| dtype=bool, | |
| ) | |
| elif mode == "inference": | |
| # Anchors in normalized coordinates | |
| input_anchors = KL.Input(shape=[None, 4], name="input_anchors") | |
| # Build the shared convolutional layers. | |
| # Bottom-up Layers | |
| # Returns a list of the last layers of each stage, 5 in total. | |
| # Don't create the thead (stage 5), so we pick the 4th item in the list. | |
| if callable(config.BACKBONE): | |
| _, C2, C3, C4, C5 = config.BACKBONE( | |
| input_image, stage5=True, train_bn=config.TRAIN_BN | |
| ) | |
| else: | |
| _, C2, C3, C4, C5 = resnet_graph( | |
| input_image, config.BACKBONE, stage5=True, train_bn=config.TRAIN_BN | |
| ) | |
| # Top-down Layers | |
| # TODO: add assert to varify feature map sizes match what's in config | |
| P5 = KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name="fpn_c5p5")(C5) | |
| P4 = KL.Add(name="fpn_p4add")( | |
| [ | |
| KL.UpSampling2D(size=(2, 2), name="fpn_p5upsampled")(P5), | |
| KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name="fpn_c4p4")(C4), | |
| ] | |
| ) | |
| P3 = KL.Add(name="fpn_p3add")( | |
| [ | |
| KL.UpSampling2D(size=(2, 2), name="fpn_p4upsampled")(P4), | |
| KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name="fpn_c3p3")(C3), | |
| ] | |
| ) | |
| P2 = KL.Add(name="fpn_p2add")( | |
| [ | |
| KL.UpSampling2D(size=(2, 2), name="fpn_p3upsampled")(P3), | |
| KL.Conv2D(config.TOP_DOWN_PYRAMID_SIZE, (1, 1), name="fpn_c2p2")(C2), | |
| ] | |
| ) | |
| # Attach 3x3 conv to all P layers to get the final feature maps. | |
| P2 = KL.Conv2D( | |
| config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p2" | |
| )(P2) | |
| P3 = KL.Conv2D( | |
| config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p3" | |
| )(P3) | |
| P4 = KL.Conv2D( | |
| config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p4" | |
| )(P4) | |
| P5 = KL.Conv2D( | |
| config.TOP_DOWN_PYRAMID_SIZE, (3, 3), padding="SAME", name="fpn_p5" | |
| )(P5) | |
| # P6 is used for the 5th anchor scale in RPN. Generated by | |
| # subsampling from P5 with stride of 2. | |
| P6 = KL.MaxPooling2D(pool_size=(1, 1), strides=2, name="fpn_p6")(P5) | |
| # Note that P6 is used in RPN, but not in the classifier heads. | |
| rpn_feature_maps = [P2, P3, P4, P5, P6] | |
| mrcnn_feature_maps = [P2, P3, P4, P5] | |
| # Anchors | |
| if mode == "training": | |
| anchors = self.get_anchors(config.IMAGE_SHAPE) | |
| # Duplicate across the batch dimension because Keras requires it | |
| # TODO: can this be optimized to avoid duplicating the anchors? | |
| anchors = np.broadcast_to(anchors, (config.BATCH_SIZE,) + anchors.shape) | |
| # A hack to get around Keras's bad support for constants | |
| anchors = KL.Lambda(lambda x: tf.Variable(anchors), name="anchors")( | |
| input_image | |
| ) | |
| else: | |
| anchors = input_anchors | |
| # RPN Model | |
| rpn = build_rpn_model( | |
| config.RPN_ANCHOR_STRIDE, | |
| len(config.RPN_ANCHOR_RATIOS), | |
| config.TOP_DOWN_PYRAMID_SIZE, | |
| ) | |
| # Loop through pyramid layers | |
| layer_outputs = [] # list of lists | |
| for p in rpn_feature_maps: | |
| layer_outputs.append(rpn([p])) | |
| # Concatenate layer outputs | |
| # Convert from list of lists of level outputs to list of lists | |
| # of outputs across levels. | |
| # e.g. [[a1, b1, c1], [a2, b2, c2]] => [[a1, a2], [b1, b2], [c1, c2]] | |
| output_names = ["rpn_class_logits", "rpn_class", "rpn_bbox"] | |
| outputs = list(zip(*layer_outputs)) | |
| outputs = [ | |
| KL.Concatenate(axis=1, name=n)(list(o)) | |
| for o, n in zip(outputs, output_names) | |
| ] | |
| rpn_class_logits, rpn_class, rpn_bbox = outputs | |
| # Generate proposals | |
| # Proposals are [batch, N, (y1, x1, y2, x2)] in normalized coordinates | |
| # and zero padded. | |
| proposal_count = ( | |
| config.POST_NMS_ROIS_TRAINING | |
| if mode == "training" | |
| else config.POST_NMS_ROIS_INFERENCE | |
| ) | |
| rpn_rois = ProposalLayer( | |
| proposal_count=proposal_count, | |
| nms_threshold=config.RPN_NMS_THRESHOLD, | |
| name="ROI", | |
| config=config, | |
| )([rpn_class, rpn_bbox, anchors]) | |
| if mode == "training": | |
| # Class ID mask to mark class IDs supported by the dataset the image | |
| # came from. | |
| active_class_ids = KL.Lambda( | |
| lambda x: parse_image_meta_graph(x)["active_class_ids"] | |
| )(input_image_meta) | |
| if not config.USE_RPN_ROIS: | |
| # Ignore predicted ROIs and use ROIs provided as an input. | |
| input_rois = KL.Input( | |
| shape=[config.POST_NMS_ROIS_TRAINING, 4], | |
| name="input_roi", | |
| dtype=np.int32, | |
| ) | |
| # Normalize coordinates | |
| target_rois = KL.Lambda( | |
| lambda x: norm_boxes_graph(x, K.shape(input_image)[1:3]) | |
| )(input_rois) | |
| else: | |
| target_rois = rpn_rois | |
| # Generate detection targets | |
| # Subsamples proposals and generates target outputs for training | |
| # Note that proposal class IDs, gt_boxes, and gt_masks are zero | |
| # padded. Equally, returned rois and targets are zero padded. | |
| rois, target_class_ids, target_bbox, target_mask = DetectionTargetLayer( | |
| config, name="proposal_targets" | |
| )([target_rois, input_gt_class_ids, gt_boxes, input_gt_masks]) | |
| # Network Heads | |
| # TODO: verify that this handles zero padded ROIs | |
| mrcnn_class_logits, mrcnn_class, mrcnn_bbox = fpn_classifier_graph( | |
| rois, | |
| mrcnn_feature_maps, | |
| input_image_meta, | |
| config.POOL_SIZE, | |
| config.NUM_CLASSES, | |
| train_bn=config.TRAIN_BN, | |
| fc_layers_size=config.FPN_CLASSIF_FC_LAYERS_SIZE, | |
| ) | |
| mrcnn_mask = build_fpn_mask_graph( | |
| rois, | |
| mrcnn_feature_maps, | |
| input_image_meta, | |
| config.MASK_POOL_SIZE, | |
| config.NUM_CLASSES, | |
| train_bn=config.TRAIN_BN, | |
| ) | |
| # TODO: clean up (use tf.identify if necessary) | |
| output_rois = KL.Lambda(lambda x: x * 1, name="output_rois")(rois) | |
| # Losses | |
| rpn_class_loss = KL.Lambda( | |
| lambda x: rpn_class_loss_graph(*x), name="rpn_class_loss" | |
| )([input_rpn_match, rpn_class_logits]) | |
| rpn_bbox_loss = KL.Lambda( | |
| lambda x: rpn_bbox_loss_graph(config, *x), name="rpn_bbox_loss" | |
| )([input_rpn_bbox, input_rpn_match, rpn_bbox]) | |
| class_loss = KL.Lambda( | |
| lambda x: mrcnn_class_loss_graph(*x), name="mrcnn_class_loss" | |
| )([target_class_ids, mrcnn_class_logits, active_class_ids]) | |
| bbox_loss = KL.Lambda( | |
| lambda x: mrcnn_bbox_loss_graph(*x), name="mrcnn_bbox_loss" | |
| )([target_bbox, target_class_ids, mrcnn_bbox]) | |
| mask_loss = KL.Lambda( | |
| lambda x: mrcnn_mask_loss_graph(*x), name="mrcnn_mask_loss" | |
| )([target_mask, target_class_ids, mrcnn_mask]) | |
| # Model | |
| inputs = [ | |
| input_image, | |
| input_image_meta, | |
| input_rpn_match, | |
| input_rpn_bbox, | |
| input_gt_class_ids, | |
| input_gt_boxes, | |
| input_gt_masks, | |
| ] | |
| if not config.USE_RPN_ROIS: | |
| inputs.append(input_rois) | |
| outputs = [ | |
| rpn_class_logits, | |
| rpn_class, | |
| rpn_bbox, | |
| mrcnn_class_logits, | |
| mrcnn_class, | |
| mrcnn_bbox, | |
| mrcnn_mask, | |
| rpn_rois, | |
| output_rois, | |
| rpn_class_loss, | |
| rpn_bbox_loss, | |
| class_loss, | |
| bbox_loss, | |
| mask_loss, | |
| ] | |
| model = KM.Model(inputs, outputs, name="mask_rcnn") | |
| else: | |
| # Network Heads | |
| # Proposal classifier and BBox regressor heads | |
| mrcnn_class_logits, mrcnn_class, mrcnn_bbox = fpn_classifier_graph( | |
| rpn_rois, | |
| mrcnn_feature_maps, | |
| input_image_meta, | |
| config.POOL_SIZE, | |
| config.NUM_CLASSES, | |
| train_bn=config.TRAIN_BN, | |
| fc_layers_size=config.FPN_CLASSIF_FC_LAYERS_SIZE, | |
| ) | |
| # Detections | |
| # output is [batch, num_detections, (y1, x1, y2, x2, class_id, score)] in | |
| # normalized coordinates | |
| detections = DetectionLayer(config, name="mrcnn_detection")( | |
| [rpn_rois, mrcnn_class, mrcnn_bbox, input_image_meta] | |
| ) | |
| # Create masks for detections | |
| detection_boxes = KL.Lambda(lambda x: x[..., :4])(detections) | |
| mrcnn_mask = build_fpn_mask_graph( | |
| detection_boxes, | |
| mrcnn_feature_maps, | |
| input_image_meta, | |
| config.MASK_POOL_SIZE, | |
| config.NUM_CLASSES, | |
| train_bn=config.TRAIN_BN, | |
| ) | |
| model = KM.Model( | |
| [input_image, input_image_meta, input_anchors], | |
| [ | |
| detections, | |
| mrcnn_class, | |
| mrcnn_bbox, | |
| mrcnn_mask, | |
| rpn_rois, | |
| rpn_class, | |
| rpn_bbox, | |
| ], | |
| name="mask_rcnn", | |
| ) | |
| # Add multi-GPU support. | |
| if config.GPU_COUNT > 1: | |
| from mrcnn.parallel_model import ParallelModel | |
| model = ParallelModel(model, config.GPU_COUNT) | |
| return model | |
| def find_last(self): | |
| """Finds the last checkpoint file of the last trained model in the | |
| model directory. | |
| Returns: | |
| The path of the last checkpoint file | |
| """ | |
| # Get directory names. Each directory corresponds to a model | |
| dir_names = next(os.walk(self.model_dir))[1] | |
| key = self.config.NAME.lower() | |
| dir_names = filter(lambda f: f.startswith(key), dir_names) | |
| dir_names = sorted(dir_names) | |
| if not dir_names: | |
| import errno | |
| raise FileNotFoundError( | |
| errno.ENOENT, | |
| "Could not find model directory under {}".format(self.model_dir), | |
| ) | |
| # Pick last directory | |
| dir_name = os.path.join(self.model_dir, dir_names[-1]) | |
| # Find the last checkpoint | |
| checkpoints = next(os.walk(dir_name))[2] | |
| checkpoints = filter(lambda f: f.startswith("mask_rcnn"), checkpoints) | |
| checkpoints = sorted(checkpoints) | |
| if not checkpoints: | |
| import errno | |
| raise FileNotFoundError( | |
| errno.ENOENT, "Could not find weight files in {}".format(dir_name) | |
| ) | |
| checkpoint = os.path.join(dir_name, checkpoints[-1]) | |
| return checkpoint | |
| def load_weights(self, filepath, by_name=False, exclude=None): | |
| """Modified version of the corresponding Keras function with | |
| the addition of multi-GPU support and the ability to exclude | |
| some layers from loading. | |
| exclude: list of layer names to exclude | |
| """ | |
| import h5py | |
| # Conditional import to support versions of Keras before 2.2 | |
| # TODO: remove in about 6 months (end of 2018) | |
| try: | |
| from keras.engine import saving | |
| except ImportError: | |
| # Keras before 2.2 used the 'topology' namespace. | |
| from keras.engine import topology as saving | |
| if exclude: | |
| by_name = True | |
| if h5py is None: | |
| raise ImportError("`load_weights` requires h5py.") | |
| f = h5py.File(filepath, mode="r") | |
| if "layer_names" not in f.attrs and "model_weights" in f: | |
| f = f["model_weights"] | |
| # In multi-GPU training, we wrap the model. Get layers | |
| # of the inner model because they have the weights. | |
| keras_model = self.keras_model | |
| layers = ( | |
| keras_model.inner_model.layers | |
| if hasattr(keras_model, "inner_model") | |
| else keras_model.layers | |
| ) | |
| # Exclude some layers | |
| if exclude: | |
| layers = filter(lambda l: l.name not in exclude, layers) | |
| if by_name: | |
| saving.load_weights_from_hdf5_group_by_name(f, layers) | |
| else: | |
| saving.load_weights_from_hdf5_group(f, layers) | |
| if hasattr(f, "close"): | |
| f.close() | |
| # Update the log directory | |
| self.set_log_dir(filepath) | |
| def get_imagenet_weights(self): | |
| """Downloads ImageNet trained weights from Keras. | |
| Returns path to weights file. | |
| """ | |
| from keras.utils.data_utils import get_file | |
| TF_WEIGHTS_PATH_NO_TOP = ( | |
| "https://github.com/fchollet/deep-learning-models/" | |
| "releases/download/v0.2/" | |
| "resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5" | |
| ) | |
| weights_path = get_file( | |
| "resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5", | |
| TF_WEIGHTS_PATH_NO_TOP, | |
| cache_subdir="models", | |
| md5_hash="a268eb855778b3df3c7506639542a6af", | |
| ) | |
| return weights_path | |
| def compile(self, learning_rate, momentum): | |
| """Gets the model ready for training. Adds losses, regularization, and | |
| metrics. Then calls the Keras compile() function. | |
| """ | |
| # Optimizer object | |
| optimizer = keras.optimizers.SGD( | |
| lr=learning_rate, momentum=momentum, clipnorm=self.config.GRADIENT_CLIP_NORM | |
| ) | |
| # Add Losses | |
| # First, clear previously set losses to avoid duplication | |
| self.keras_model._losses = [] | |
| self.keras_model._per_input_losses = {} | |
| loss_names = [ | |
| "rpn_class_loss", | |
| "rpn_bbox_loss", | |
| "mrcnn_class_loss", | |
| "mrcnn_bbox_loss", | |
| "mrcnn_mask_loss", | |
| ] | |
| for name in loss_names: | |
| layer = self.keras_model.get_layer(name) | |
| if layer.output in self.keras_model.losses: | |
| continue | |
| loss = tf.reduce_mean( | |
| layer.output, keepdims=True | |
| ) * self.config.LOSS_WEIGHTS.get(name, 1.0) | |
| self.keras_model.add_loss(loss) | |
| # Add L2 Regularization | |
| # Skip gamma and beta weights of batch normalization layers. | |
| reg_losses = [ | |
| keras.regularizers.l2(self.config.WEIGHT_DECAY)(w) | |
| / tf.cast(tf.size(w), tf.float32) | |
| for w in self.keras_model.trainable_weights | |
| if "gamma" not in w.name and "beta" not in w.name | |
| ] | |
| self.keras_model.add_loss(tf.add_n(reg_losses)) | |
| # Compile | |
| self.keras_model.compile( | |
| optimizer=optimizer, loss=[None] * len(self.keras_model.outputs) | |
| ) | |
| # Add metrics for losses | |
| for name in loss_names: | |
| if name in self.keras_model.metrics_names: | |
| continue | |
| layer = self.keras_model.get_layer(name) | |
| self.keras_model.metrics_names.append(name) | |
| loss = tf.reduce_mean( | |
| layer.output, keepdims=True | |
| ) * self.config.LOSS_WEIGHTS.get(name, 1.0) | |
| self.keras_model.metrics_tensors.append(loss) | |
| def set_trainable(self, layer_regex, keras_model=None, indent=0, verbose=1): | |
| """Sets model layers as trainable if their names match | |
| the given regular expression. | |
| """ | |
| # Print message on the first call (but not on recursive calls) | |
| if verbose > 0 and keras_model is None: | |
| log("Selecting layers to train") | |
| keras_model = keras_model or self.keras_model | |
| # In multi-GPU training, we wrap the model. Get layers | |
| # of the inner model because they have the weights. | |
| layers = ( | |
| keras_model.inner_model.layers | |
| if hasattr(keras_model, "inner_model") | |
| else keras_model.layers | |
| ) | |
| for layer in layers: | |
| # Is the layer a model? | |
| if layer.__class__.__name__ == "Model": | |
| print("In model: ", layer.name) | |
| self.set_trainable(layer_regex, keras_model=layer, indent=indent + 4) | |
| continue | |
| if not layer.weights: | |
| continue | |
| # Is it trainable? | |
| trainable = bool(re.fullmatch(layer_regex, layer.name)) | |
| # Update layer. If layer is a container, update inner layer. | |
| if layer.__class__.__name__ == "TimeDistributed": | |
| layer.layer.trainable = trainable | |
| else: | |
| layer.trainable = trainable | |
| # Print trainable layer names | |
| if trainable and verbose > 0: | |
| log( | |
| "{}{:20} ({})".format( | |
| " " * indent, layer.name, layer.__class__.__name__ | |
| ) | |
| ) | |
| def set_log_dir(self, model_path=None): | |
| """Sets the model log directory and epoch counter. | |
| model_path: If None, or a format different from what this code uses | |
| then set a new log directory and start epochs from 0. Otherwise, | |
| extract the log directory and the epoch counter from the file | |
| name. | |
| """ | |
| # Set date and epoch counter as if starting a new model | |
| self.epoch = 0 | |
| now = datetime.datetime.now() | |
| # If we have a model path with date and epochs use them | |
| if model_path: | |
| # Continue from we left of. Get epoch and date from the file name | |
| # A sample model path might look like: | |
| # \path\to\logs\coco20171029T2315\mask_rcnn_coco_0001.h5 (Windows) | |
| # /path/to/logs/coco20171029T2315/mask_rcnn_coco_0001.h5 (Linux) | |
| regex = r".*[/\\][\w-]+(\d{4})(\d{2})(\d{2})T(\d{2})(\d{2})[/\\]mask\_rcnn\_[\w-]+(\d{4})\.h5" | |
| m = re.match(regex, model_path) | |
| if m: | |
| now = datetime.datetime( | |
| int(m.group(1)), | |
| int(m.group(2)), | |
| int(m.group(3)), | |
| int(m.group(4)), | |
| int(m.group(5)), | |
| ) | |
| # Epoch number in file is 1-based, and in Keras code it's 0-based. | |
| # So, adjust for that then increment by one to start from the next epoch | |
| self.epoch = int(m.group(6)) - 1 + 1 | |
| print("Re-starting from epoch %d" % self.epoch) | |
| # Directory for training logs | |
| self.log_dir = os.path.join( | |
| self.model_dir, "{}{:%Y%m%dT%H%M}".format(self.config.NAME.lower(), now) | |
| ) | |
| # Path to save after each epoch. Include placeholders that get filled by Keras. | |
| self.checkpoint_path = os.path.join( | |
| self.log_dir, "mask_rcnn_{}_*epoch*.h5".format(self.config.NAME.lower()) | |
| ) | |
| self.checkpoint_path = self.checkpoint_path.replace("*epoch*", "{epoch:04d}") | |
| def train( | |
| self, | |
| train_dataset, | |
| val_dataset, | |
| learning_rate, | |
| epochs, | |
| layers, | |
| augmentation=None, | |
| custom_callbacks=None, | |
| no_augmentation_sources=None, | |
| ): | |
| """Train the model. | |
| train_dataset, val_dataset: Training and validation Dataset objects. | |
| learning_rate: The learning rate to train with | |
| epochs: Number of training epochs. Note that previous training epochs | |
| are considered to be done alreay, so this actually determines | |
| the epochs to train in total rather than in this particaular | |
| call. | |
| layers: Allows selecting wich layers to train. It can be: | |
| - A regular expression to match layer names to train | |
| - One of these predefined values: | |
| heads: The RPN, classifier and mask heads of the network | |
| all: All the layers | |
| 3+: Train Resnet stage 3 and up | |
| 4+: Train Resnet stage 4 and up | |
| 5+: Train Resnet stage 5 and up | |
| augmentation: Optional. An imgaug (https://github.com/aleju/imgaug) | |
| augmentation. For example, passing imgaug.augmenters.Fliplr(0.5) | |
| flips images right/left 50% of the time. You can pass complex | |
| augmentations as well. This augmentation applies 50% of the | |
| time, and when it does it flips images right/left half the time | |
| and adds a Gaussian blur with a random sigma in range 0 to 5. | |
| augmentation = imgaug.augmenters.Sometimes(0.5, [ | |
| imgaug.augmenters.Fliplr(0.5), | |
| imgaug.augmenters.GaussianBlur(sigma=(0.0, 5.0)) | |
| ]) | |
| custom_callbacks: Optional. Add custom callbacks to be called | |
| with the keras fit_generator method. Must be list of type keras.callbacks. | |
| no_augmentation_sources: Optional. List of sources to exclude for | |
| augmentation. A source is string that identifies a dataset and is | |
| defined in the Dataset class. | |
| """ | |
| assert self.mode == "training", "Create model in training mode." | |
| # Pre-defined layer regular expressions | |
| layer_regex = { | |
| # all layers but the backbone | |
| "heads": r"(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)", | |
| # From a specific Resnet stage and up | |
| "3+": r"(res3.*)|(bn3.*)|(res4.*)|(bn4.*)|(res5.*)|(bn5.*)|(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)", | |
| "4+": r"(res4.*)|(bn4.*)|(res5.*)|(bn5.*)|(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)", | |
| "5+": r"(res5.*)|(bn5.*)|(mrcnn\_.*)|(rpn\_.*)|(fpn\_.*)", | |
| # All layers | |
| "all": ".*", | |
| } | |
| if layers in layer_regex.keys(): | |
| layers = layer_regex[layers] | |
| # Data generators | |
| train_generator = data_generator( | |
| train_dataset, | |
| self.config, | |
| shuffle=True, | |
| augmentation=augmentation, | |
| batch_size=self.config.BATCH_SIZE, | |
| no_augmentation_sources=no_augmentation_sources, | |
| ) | |
| val_generator = data_generator( | |
| val_dataset, self.config, shuffle=True, batch_size=self.config.BATCH_SIZE | |
| ) | |
| # Create log_dir if it does not exist | |
| if not os.path.exists(self.log_dir): | |
| os.makedirs(self.log_dir) | |
| # Callbacks | |
| callbacks = [ | |
| keras.callbacks.TensorBoard( | |
| log_dir=self.log_dir, | |
| histogram_freq=0, | |
| write_graph=True, | |
| write_images=False, | |
| ), | |
| keras.callbacks.ModelCheckpoint( | |
| self.checkpoint_path, verbose=0, save_weights_only=True | |
| ), | |
| ] | |
| # Add custom callbacks to the list | |
| if custom_callbacks: | |
| callbacks += custom_callbacks | |
| # Train | |
| log("\nStarting at epoch {}. LR={}\n".format(self.epoch, learning_rate)) | |
| log("Checkpoint Path: {}".format(self.checkpoint_path)) | |
| self.set_trainable(layers) | |
| self.compile(learning_rate, self.config.LEARNING_MOMENTUM) | |
| # Work-around for Windows: Keras fails on Windows when using | |
| # multiprocessing workers. See discussion here: | |
| # https://github.com/matterport/Mask_RCNN/issues/13#issuecomment-353124009 | |
| if os.name is "nt": | |
| workers = 0 | |
| else: | |
| workers = multiprocessing.cpu_count() | |
| self.keras_model.fit_generator( | |
| train_generator, | |
| initial_epoch=self.epoch, | |
| epochs=epochs, | |
| steps_per_epoch=self.config.STEPS_PER_EPOCH, | |
| callbacks=callbacks, | |
| validation_data=val_generator, | |
| validation_steps=self.config.VALIDATION_STEPS, | |
| max_queue_size=100, | |
| workers=workers, | |
| use_multiprocessing=True, | |
| ) | |
| self.epoch = max(self.epoch, epochs) | |
| def mold_inputs(self, images): | |
| """Takes a list of images and modifies them to the format expected | |
| as an input to the neural network. | |
| images: List of image matrices [height,width,depth]. Images can have | |
| different sizes. | |
| Returns 3 Numpy matrices: | |
| molded_images: [N, h, w, 3]. Images resized and normalized. | |
| image_metas: [N, length of meta data]. Details about each image. | |
| windows: [N, (y1, x1, y2, x2)]. The portion of the image that has the | |
| original image (padding excluded). | |
| """ | |
| molded_images = [] | |
| image_metas = [] | |
| windows = [] | |
| for image in images: | |
| # Resize image | |
| # TODO: move resizing to mold_image() | |
| molded_image, window, scale, padding, crop = utils.resize_image( | |
| image, | |
| min_dim=self.config.IMAGE_MIN_DIM, | |
| min_scale=self.config.IMAGE_MIN_SCALE, | |
| max_dim=self.config.IMAGE_MAX_DIM, | |
| mode=self.config.IMAGE_RESIZE_MODE, | |
| ) | |
| molded_image = mold_image(molded_image, self.config) | |
| # Build image_meta | |
| image_meta = compose_image_meta( | |
| 0, | |
| image.shape, | |
| molded_image.shape, | |
| window, | |
| scale, | |
| np.zeros([self.config.NUM_CLASSES], dtype=np.int32), | |
| ) | |
| # Append | |
| molded_images.append(molded_image) | |
| windows.append(window) | |
| image_metas.append(image_meta) | |
| # Pack into arrays | |
| molded_images = np.stack(molded_images) | |
| image_metas = np.stack(image_metas) | |
| windows = np.stack(windows) | |
| return molded_images, image_metas, windows | |
| def unmold_detections( | |
| self, detections, mrcnn_mask, original_image_shape, image_shape, window | |
| ): | |
| """Reformats the detections of one image from the format of the neural | |
| network output to a format suitable for use in the rest of the | |
| application. | |
| detections: [N, (y1, x1, y2, x2, class_id, score)] in normalized coordinates | |
| mrcnn_mask: [N, height, width, num_classes] | |
| original_image_shape: [H, W, C] Original image shape before resizing | |
| image_shape: [H, W, C] Shape of the image after resizing and padding | |
| window: [y1, x1, y2, x2] Pixel coordinates of box in the image where the real | |
| image is excluding the padding. | |
| Returns: | |
| boxes: [N, (y1, x1, y2, x2)] Bounding boxes in pixels | |
| class_ids: [N] Integer class IDs for each bounding box | |
| scores: [N] Float probability scores of the class_id | |
| masks: [height, width, num_instances] Instance masks | |
| """ | |
| # How many detections do we have? | |
| # Detections array is padded with zeros. Find the first class_id == 0. | |
| zero_ix = np.where(detections[:, 4] == 0)[0] | |
| N = zero_ix[0] if zero_ix.shape[0] > 0 else detections.shape[0] | |
| # Extract boxes, class_ids, scores, and class-specific masks | |
| boxes = detections[:N, :4] | |
| class_ids = detections[:N, 4].astype(np.int32) | |
| scores = detections[:N, 5] | |
| masks = mrcnn_mask[np.arange(N), :, :, class_ids] | |
| # Translate normalized coordinates in the resized image to pixel | |
| # coordinates in the original image before resizing | |
| window = utils.norm_boxes(window, image_shape[:2]) | |
| wy1, wx1, wy2, wx2 = window | |
| shift = np.array([wy1, wx1, wy1, wx1]) | |
| wh = wy2 - wy1 # window height | |
| ww = wx2 - wx1 # window width | |
| scale = np.array([wh, ww, wh, ww]) | |
| # Convert boxes to normalized coordinates on the window | |
| boxes = np.divide(boxes - shift, scale) | |
| # Convert boxes to pixel coordinates on the original image | |
| boxes = utils.denorm_boxes(boxes, original_image_shape[:2]) | |
| # Filter out detections with zero area. Happens in early training when | |
| # network weights are still random | |
| exclude_ix = np.where( | |
| (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) <= 0 | |
| )[0] | |
| if exclude_ix.shape[0] > 0: | |
| boxes = np.delete(boxes, exclude_ix, axis=0) | |
| class_ids = np.delete(class_ids, exclude_ix, axis=0) | |
| scores = np.delete(scores, exclude_ix, axis=0) | |
| masks = np.delete(masks, exclude_ix, axis=0) | |
| N = class_ids.shape[0] | |
| # Resize masks to original image size and set boundary threshold. | |
| full_masks = [] | |
| for i in range(N): | |
| # Convert neural network mask to full size mask | |
| full_mask = utils.unmold_mask(masks[i], boxes[i], original_image_shape) | |
| full_masks.append(full_mask) | |
| full_masks = ( | |
| np.stack(full_masks, axis=-1) | |
| if full_masks | |
| else np.empty(original_image_shape[:2] + (0,)) | |
| ) | |
| return boxes, class_ids, scores, full_masks | |
| def detect(self, images, verbose=0): | |
| """Runs the detection pipeline. | |
| images: List of images, potentially of different sizes. | |
| Returns a list of dicts, one dict per image. The dict contains: | |
| rois: [N, (y1, x1, y2, x2)] detection bounding boxes | |
| class_ids: [N] int class IDs | |
| scores: [N] float probability scores for the class IDs | |
| masks: [H, W, N] instance binary masks | |
| """ | |
| assert self.mode == "inference", "Create model in inference mode." | |
| assert ( | |
| len(images) == self.config.BATCH_SIZE | |
| ), "len(images) must be equal to BATCH_SIZE" | |
| if verbose: | |
| log("Processing {} images".format(len(images))) | |
| for image in images: | |
| log("image", image) | |
| # Mold inputs to format expected by the neural network | |
| molded_images, image_metas, windows = self.mold_inputs(images) | |
| # Validate image sizes | |
| # All images in a batch MUST be of the same size | |
| image_shape = molded_images[0].shape | |
| for g in molded_images[1:]: | |
| assert ( | |
| g.shape == image_shape | |
| ), "After resizing, all images must have the same size. Check IMAGE_RESIZE_MODE and image sizes." | |
| # Anchors | |
| anchors = self.get_anchors(image_shape) | |
| # Duplicate across the batch dimension because Keras requires it | |
| # TODO: can this be optimized to avoid duplicating the anchors? | |
| anchors = np.broadcast_to(anchors, (self.config.BATCH_SIZE,) + anchors.shape) | |
| if verbose: | |
| log("molded_images", molded_images) | |
| log("image_metas", image_metas) | |
| log("anchors", anchors) | |
| # Run object detection | |
| detections, _, _, mrcnn_mask, _, _, _ = self.keras_model.predict( | |
| [molded_images, image_metas, anchors], verbose=0 | |
| ) | |
| # Process detections | |
| results = [] | |
| for i, image in enumerate(images): | |
| ( | |
| final_rois, | |
| final_class_ids, | |
| final_scores, | |
| final_masks, | |
| ) = self.unmold_detections( | |
| detections[i], | |
| mrcnn_mask[i], | |
| image.shape, | |
| molded_images[i].shape, | |
| windows[i], | |
| ) | |
| results.append( | |
| { | |
| "rois": final_rois, | |
| "class_ids": final_class_ids, | |
| "scores": final_scores, | |
| "masks": final_masks, | |
| } | |
| ) | |
| return results | |
| def detect_molded(self, molded_images, image_metas, verbose=0): | |
| """Runs the detection pipeline, but expect inputs that are | |
| molded already. Used mostly for debugging and inspecting | |
| the model. | |
| molded_images: List of images loaded using load_image_gt() | |
| image_metas: image meta data, also returned by load_image_gt() | |
| Returns a list of dicts, one dict per image. The dict contains: | |
| rois: [N, (y1, x1, y2, x2)] detection bounding boxes | |
| class_ids: [N] int class IDs | |
| scores: [N] float probability scores for the class IDs | |
| masks: [H, W, N] instance binary masks | |
| """ | |
| assert self.mode == "inference", "Create model in inference mode." | |
| assert ( | |
| len(molded_images) == self.config.BATCH_SIZE | |
| ), "Number of images must be equal to BATCH_SIZE" | |
| if verbose: | |
| log("Processing {} images".format(len(molded_images))) | |
| for image in molded_images: | |
| log("image", image) | |
| # Validate image sizes | |
| # All images in a batch MUST be of the same size | |
| image_shape = molded_images[0].shape | |
| for g in molded_images[1:]: | |
| assert g.shape == image_shape, "Images must have the same size" | |
| # Anchors | |
| anchors = self.get_anchors(image_shape) | |
| # Duplicate across the batch dimension because Keras requires it | |
| # TODO: can this be optimized to avoid duplicating the anchors? | |
| anchors = np.broadcast_to(anchors, (self.config.BATCH_SIZE,) + anchors.shape) | |
| if verbose: | |
| log("molded_images", molded_images) | |
| log("image_metas", image_metas) | |
| log("anchors", anchors) | |
| # Run object detection | |
| detections, _, _, mrcnn_mask, _, _, _ = self.keras_model.predict( | |
| [molded_images, image_metas, anchors], verbose=0 | |
| ) | |
| # Process detections | |
| results = [] | |
| for i, image in enumerate(molded_images): | |
| window = [0, 0, image.shape[0], image.shape[1]] | |
| ( | |
| final_rois, | |
| final_class_ids, | |
| final_scores, | |
| final_masks, | |
| ) = self.unmold_detections( | |
| detections[i], | |
| mrcnn_mask[i], | |
| image.shape, | |
| molded_images[i].shape, | |
| window, | |
| ) | |
| results.append( | |
| { | |
| "rois": final_rois, | |
| "class_ids": final_class_ids, | |
| "scores": final_scores, | |
| "masks": final_masks, | |
| } | |
| ) | |
| return results | |
| def get_anchors(self, image_shape): | |
| """Returns anchor pyramid for the given image size.""" | |
| backbone_shapes = compute_backbone_shapes(self.config, image_shape) | |
| # Cache anchors and reuse if image shape is the same | |
| if not hasattr(self, "_anchor_cache"): | |
| self._anchor_cache = {} | |
| if not tuple(image_shape) in self._anchor_cache: | |
| # Generate Anchors | |
| a = utils.generate_pyramid_anchors( | |
| self.config.RPN_ANCHOR_SCALES, | |
| self.config.RPN_ANCHOR_RATIOS, | |
| backbone_shapes, | |
| self.config.BACKBONE_STRIDES, | |
| self.config.RPN_ANCHOR_STRIDE, | |
| ) | |
| # Keep a copy of the latest anchors in pixel coordinates because | |
| # it's used in inspect_model notebooks. | |
| # TODO: Remove this after the notebook are refactored to not use it | |
| self.anchors = a | |
| # Normalize coordinates | |
| self._anchor_cache[tuple(image_shape)] = utils.norm_boxes( | |
| a, image_shape[:2] | |
| ) | |
| return self._anchor_cache[tuple(image_shape)] | |
| def ancestor(self, tensor, name, checked=None): | |
| """Finds the ancestor of a TF tensor in the computation graph. | |
| tensor: TensorFlow symbolic tensor. | |
| name: Name of ancestor tensor to find | |
| checked: For internal use. A list of tensors that were already | |
| searched to avoid loops in traversing the graph. | |
| """ | |
| checked = checked if checked is not None else [] | |
| # Put a limit on how deep we go to avoid very long loops | |
| if len(checked) > 500: | |
| return None | |
| # Convert name to a regex and allow matching a number prefix | |
| # because Keras adds them automatically | |
| if isinstance(name, str): | |
| name = re.compile(name.replace("/", r"(\_\d+)*/")) | |
| parents = tensor.op.inputs | |
| for p in parents: | |
| if p in checked: | |
| continue | |
| if bool(re.fullmatch(name, p.name)): | |
| return p | |
| checked.append(p) | |
| a = self.ancestor(p, name, checked) | |
| if a is not None: | |
| return a | |
| return None | |
| def find_trainable_layer(self, layer): | |
| """If a layer is encapsulated by another layer, this function | |
| digs through the encapsulation and returns the layer that holds | |
| the weights. | |
| """ | |
| if layer.__class__.__name__ == "TimeDistributed": | |
| return self.find_trainable_layer(layer.layer) | |
| return layer | |
| def get_trainable_layers(self): | |
| """Returns a list of layers that have weights.""" | |
| layers = [] | |
| # Loop through all layers | |
| for l in self.keras_model.layers: | |
| # If layer is a wrapper, find inner trainable layer | |
| l = self.find_trainable_layer(l) | |
| # Include layer if it has weights | |
| if l.get_weights(): | |
| layers.append(l) | |
| return layers | |
| def run_graph(self, images, outputs, image_metas=None): | |
| """Runs a sub-set of the computation graph that computes the given | |
| outputs. | |
| image_metas: If provided, the images are assumed to be already | |
| molded (i.e. resized, padded, and normalized) | |
| outputs: List of tuples (name, tensor) to compute. The tensors are | |
| symbolic TensorFlow tensors and the names are for easy tracking. | |
| Returns an ordered dict of results. Keys are the names received in the | |
| input and values are Numpy arrays. | |
| """ | |
| model = self.keras_model | |
| # Organize desired outputs into an ordered dict | |
| outputs = OrderedDict(outputs) | |
| for o in outputs.values(): | |
| assert o is not None | |
| # Build a Keras function to run parts of the computation graph | |
| inputs = model.inputs | |
| if model.uses_learning_phase and not isinstance(K.learning_phase(), int): | |
| inputs += [K.learning_phase()] | |
| kf = K.function(model.inputs, list(outputs.values())) | |
| # Prepare inputs | |
| if image_metas is None: | |
| molded_images, image_metas, _ = self.mold_inputs(images) | |
| else: | |
| molded_images = images | |
| image_shape = molded_images[0].shape | |
| # Anchors | |
| anchors = self.get_anchors(image_shape) | |
| # Duplicate across the batch dimension because Keras requires it | |
| # TODO: can this be optimized to avoid duplicating the anchors? | |
| anchors = np.broadcast_to(anchors, (self.config.BATCH_SIZE,) + anchors.shape) | |
| model_in = [molded_images, image_metas, anchors] | |
| # Run inference | |
| if model.uses_learning_phase and not isinstance(K.learning_phase(), int): | |
| model_in.append(0.0) | |
| outputs_np = kf(model_in) | |
| # Pack the generated Numpy arrays into a a dict and log the results. | |
| outputs_np = OrderedDict([(k, v) for k, v in zip(outputs.keys(), outputs_np)]) | |
| for k, v in outputs_np.items(): | |
| log(k, v) | |
| return outputs_np | |
| ############################################################ | |
| # Data Formatting | |
| ############################################################ | |
| def compose_image_meta( | |
| image_id, original_image_shape, image_shape, window, scale, active_class_ids | |
| ): | |
| """Takes attributes of an image and puts them in one 1D array. | |
| image_id: An int ID of the image. Useful for debugging. | |
| original_image_shape: [H, W, C] before resizing or padding. | |
| image_shape: [H, W, C] after resizing and padding | |
| window: (y1, x1, y2, x2) in pixels. The area of the image where the real | |
| image is (excluding the padding) | |
| scale: The scaling factor applied to the original image (float32) | |
| active_class_ids: List of class_ids available in the dataset from which | |
| the image came. Useful if training on images from multiple datasets | |
| where not all classes are present in all datasets. | |
| """ | |
| meta = np.array( | |
| [image_id] | |
| + list(original_image_shape) # size=1 | |
| + list(image_shape) # size=3 | |
| + list(window) # size=3 | |
| + [scale] # size=4 (y1, x1, y2, x2) in image cooredinates | |
| + list(active_class_ids) # size=1 # size=num_classes | |
| ) | |
| return meta | |
| def parse_image_meta(meta): | |
| """Parses an array that contains image attributes to its components. | |
| See compose_image_meta() for more details. | |
| meta: [batch, meta length] where meta length depends on NUM_CLASSES | |
| Returns a dict of the parsed values. | |
| """ | |
| image_id = meta[:, 0] | |
| original_image_shape = meta[:, 1:4] | |
| image_shape = meta[:, 4:7] | |
| window = meta[:, 7:11] # (y1, x1, y2, x2) window of image in in pixels | |
| scale = meta[:, 11] | |
| active_class_ids = meta[:, 12:] | |
| return { | |
| "image_id": image_id.astype(np.int32), | |
| "original_image_shape": original_image_shape.astype(np.int32), | |
| "image_shape": image_shape.astype(np.int32), | |
| "window": window.astype(np.int32), | |
| "scale": scale.astype(np.float32), | |
| "active_class_ids": active_class_ids.astype(np.int32), | |
| } | |
| def parse_image_meta_graph(meta): | |
| """Parses a tensor that contains image attributes to its components. | |
| See compose_image_meta() for more details. | |
| meta: [batch, meta length] where meta length depends on NUM_CLASSES | |
| Returns a dict of the parsed tensors. | |
| """ | |
| image_id = meta[:, 0] | |
| original_image_shape = meta[:, 1:4] | |
| image_shape = meta[:, 4:7] | |
| window = meta[:, 7:11] # (y1, x1, y2, x2) window of image in in pixels | |
| scale = meta[:, 11] | |
| active_class_ids = meta[:, 12:] | |
| return { | |
| "image_id": image_id, | |
| "original_image_shape": original_image_shape, | |
| "image_shape": image_shape, | |
| "window": window, | |
| "scale": scale, | |
| "active_class_ids": active_class_ids, | |
| } | |
| def mold_image(images, config): | |
| """Expects an RGB image (or array of images) and subtracts | |
| the mean pixel and converts it to float. Expects image | |
| colors in RGB order. | |
| """ | |
| return images.astype(np.float32) - config.MEAN_PIXEL | |
| def unmold_image(normalized_images, config): | |
| """Takes a image normalized with mold() and returns the original.""" | |
| return (normalized_images + config.MEAN_PIXEL).astype(np.uint8) | |
| ############################################################ | |
| # Miscellenous Graph Functions | |
| ############################################################ | |
| def trim_zeros_graph(boxes, name="trim_zeros"): | |
| """Often boxes are represented with matrices of shape [N, 4] and | |
| are padded with zeros. This removes zero boxes. | |
| boxes: [N, 4] matrix of boxes. | |
| non_zeros: [N] a 1D boolean mask identifying the rows to keep | |
| """ | |
| non_zeros = tf.cast(tf.reduce_sum(tf.abs(boxes), axis=1), tf.bool) | |
| boxes = tf.boolean_mask(boxes, non_zeros, name=name) | |
| return boxes, non_zeros | |
| def batch_pack_graph(x, counts, num_rows): | |
| """Picks different number of values from each row | |
| in x depending on the values in counts. | |
| """ | |
| outputs = [] | |
| for i in range(num_rows): | |
| outputs.append(x[i, : counts[i]]) | |
| return tf.concat(outputs, axis=0) | |
| def norm_boxes_graph(boxes, shape): | |
| """Converts boxes from pixel coordinates to normalized coordinates. | |
| boxes: [..., (y1, x1, y2, x2)] in pixel coordinates | |
| shape: [..., (height, width)] in pixels | |
| Note: In pixel coordinates (y2, x2) is outside the box. But in normalized | |
| coordinates it's inside the box. | |
| Returns: | |
| [..., (y1, x1, y2, x2)] in normalized coordinates | |
| """ | |
| h, w = tf.split(tf.cast(shape, tf.float32), 2) | |
| scale = tf.concat([h, w, h, w], axis=-1) - tf.constant(1.0) | |
| shift = tf.constant([0.0, 0.0, 1.0, 1.0]) | |
| return tf.divide(boxes - shift, scale) | |
| def denorm_boxes_graph(boxes, shape): | |
| """Converts boxes from normalized coordinates to pixel coordinates. | |
| boxes: [..., (y1, x1, y2, x2)] in normalized coordinates | |
| shape: [..., (height, width)] in pixels | |
| Note: In pixel coordinates (y2, x2) is outside the box. But in normalized | |
| coordinates it's inside the box. | |
| Returns: | |
| [..., (y1, x1, y2, x2)] in pixel coordinates | |
| """ | |
| h, w = tf.split(tf.cast(shape, tf.float32), 2) | |
| scale = tf.concat([h, w, h, w], axis=-1) - tf.constant(1.0) | |
| shift = tf.constant([0.0, 0.0, 1.0, 1.0]) | |
| return tf.cast(tf.round(tf.multiply(boxes, scale) + shift), tf.int32) | |