Spaces:
Runtime error
Runtime error
add KenLM
Browse files- 5gram.bin +3 -0
- app.py +28 -3
- requirements.txt +3 -1
5gram.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:46e982596dbb0c7c225dd9b88ef89c733ba6d718befc3c3b833b1daddc60816a
|
| 3 |
+
size 11939611
|
app.py
CHANGED
|
@@ -1,11 +1,35 @@
|
|
| 1 |
import soundfile as sf
|
| 2 |
import torch
|
| 3 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
|
|
|
| 4 |
import gradio as gr
|
| 5 |
import sox
|
| 6 |
import os
|
|
|
|
| 7 |
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
def convert(inputfile, outfile):
|
| 10 |
sox_tfm = sox.Transformer()
|
| 11 |
sox_tfm.set_output_format(
|
|
@@ -18,6 +42,7 @@ api_token = os.getenv("API_TOKEN")
|
|
| 18 |
model_name = "indonesian-nlp/wav2vec2-luganda"
|
| 19 |
processor = Wav2Vec2Processor.from_pretrained(model_name, use_auth_token=api_token)
|
| 20 |
model = Wav2Vec2ForCTC.from_pretrained(model_name, use_auth_token=api_token)
|
|
|
|
| 21 |
|
| 22 |
|
| 23 |
def parse_transcription(wav_file):
|
|
@@ -25,9 +50,9 @@ def parse_transcription(wav_file):
|
|
| 25 |
convert(wav_file.name, filename + "16k.wav")
|
| 26 |
speech, _ = sf.read(filename + "16k.wav")
|
| 27 |
input_values = processor(speech, sampling_rate=16_000, return_tensors="pt").input_values
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
transcription =
|
| 31 |
return transcription
|
| 32 |
|
| 33 |
|
|
|
|
| 1 |
import soundfile as sf
|
| 2 |
import torch
|
| 3 |
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
| 4 |
+
from pyctcdecode import build_ctcdecoder
|
| 5 |
import gradio as gr
|
| 6 |
import sox
|
| 7 |
import os
|
| 8 |
+
from multiprocessing import Pool
|
| 9 |
|
| 10 |
|
| 11 |
+
class KenLM:
|
| 12 |
+
def __init__(self, tokenizer, model_name, num_workers=8, beam_width=128):
|
| 13 |
+
self.num_workers = num_workers
|
| 14 |
+
self.beam_width = beam_width
|
| 15 |
+
vocab_dict = tokenizer.get_vocab()
|
| 16 |
+
self.vocabulary = [x[0] for x in sorted(vocab_dict.items(), key=lambda x: x[1], reverse=False)]
|
| 17 |
+
# Workaround for wrong number of vocabularies:
|
| 18 |
+
self.vocabulary = self.vocabulary[:-2]
|
| 19 |
+
self.decoder = build_ctcdecoder(self.vocabulary, model_name)
|
| 20 |
+
|
| 21 |
+
@staticmethod
|
| 22 |
+
def lm_postprocess(text):
|
| 23 |
+
return ' '.join([x if len(x) > 1 else "" for x in text.split()]).strip()
|
| 24 |
+
|
| 25 |
+
def decode(self, logits):
|
| 26 |
+
probs = logits.cpu().numpy()
|
| 27 |
+
# probs = logits.numpy()
|
| 28 |
+
with Pool(self.num_workers) as pool:
|
| 29 |
+
text = self.decoder.decode_batch(pool, probs)
|
| 30 |
+
text = [KenLM.lm_postprocess(x) for x in text]
|
| 31 |
+
return text
|
| 32 |
+
|
| 33 |
def convert(inputfile, outfile):
|
| 34 |
sox_tfm = sox.Transformer()
|
| 35 |
sox_tfm.set_output_format(
|
|
|
|
| 42 |
model_name = "indonesian-nlp/wav2vec2-luganda"
|
| 43 |
processor = Wav2Vec2Processor.from_pretrained(model_name, use_auth_token=api_token)
|
| 44 |
model = Wav2Vec2ForCTC.from_pretrained(model_name, use_auth_token=api_token)
|
| 45 |
+
kenlm = KenLM(processor.tokenizer, "5gram.bin")
|
| 46 |
|
| 47 |
|
| 48 |
def parse_transcription(wav_file):
|
|
|
|
| 50 |
convert(wav_file.name, filename + "16k.wav")
|
| 51 |
speech, _ = sf.read(filename + "16k.wav")
|
| 52 |
input_values = processor(speech, sampling_rate=16_000, return_tensors="pt").input_values
|
| 53 |
+
with torch.no_grad():
|
| 54 |
+
logits = model(input_values).logits
|
| 55 |
+
transcription = kenlm.decode(logits)[0]
|
| 56 |
return transcription
|
| 57 |
|
| 58 |
|
requirements.txt
CHANGED
|
@@ -3,4 +3,6 @@ soundfile
|
|
| 3 |
torch
|
| 4 |
transformers
|
| 5 |
sox
|
| 6 |
-
sentencepiece
|
|
|
|
|
|
|
|
|
| 3 |
torch
|
| 4 |
transformers
|
| 5 |
sox
|
| 6 |
+
sentencepiece
|
| 7 |
+
pyctcdecode==0.3.0
|
| 8 |
+
kenlm @ https://github.com/kpu/kenlm/archive/master.zip
|