Added Llama3 support
Browse files- app.py +4 -4
- gemini.py +3 -2
- handler.py +7 -4
- llama_groq.py +3 -5
app.py
CHANGED
@@ -27,23 +27,23 @@ def main():
|
|
27 |
if analysis_type == "Code review":
|
28 |
res=review_code(code, prompt)
|
29 |
#st.text_area(label="Result",value=res, height=300)
|
30 |
-
st.markdown(res)
|
31 |
time.sleep(1)
|
32 |
#st.markdown("Hello ooo")
|
33 |
|
34 |
elif analysis_type == "Code refinement":
|
35 |
res=refine_code(code, prompt)
|
36 |
#st.text_area(label="Result",value=res, height=300)
|
37 |
-
st.markdown(res)
|
38 |
|
39 |
elif analysis_type == "Documentation":
|
40 |
res=generate_documentation(code, prompt)
|
41 |
#st.text_area(label="Result",value=res, height=300)
|
42 |
-
st.markdown(res)
|
43 |
elif analysis_type == "Resume Writer":
|
44 |
res=resume_writer(code, prompt)
|
45 |
#st.text_area(label="Result",value=res, height=300)
|
46 |
-
st.markdown(res)
|
47 |
|
48 |
st.success(f"Code analysis for {analysis_type} submitted successfully!")
|
49 |
|
|
|
27 |
if analysis_type == "Code review":
|
28 |
res=review_code(code, prompt)
|
29 |
#st.text_area(label="Result",value=res, height=300)
|
30 |
+
st.markdown(res['text'])
|
31 |
time.sleep(1)
|
32 |
#st.markdown("Hello ooo")
|
33 |
|
34 |
elif analysis_type == "Code refinement":
|
35 |
res=refine_code(code, prompt)
|
36 |
#st.text_area(label="Result",value=res, height=300)
|
37 |
+
st.markdown(res['text'])
|
38 |
|
39 |
elif analysis_type == "Documentation":
|
40 |
res=generate_documentation(code, prompt)
|
41 |
#st.text_area(label="Result",value=res, height=300)
|
42 |
+
st.markdown(res['text'])
|
43 |
elif analysis_type == "Resume Writer":
|
44 |
res=resume_writer(code, prompt)
|
45 |
#st.text_area(label="Result",value=res, height=300)
|
46 |
+
st.markdown(res['text'])
|
47 |
|
48 |
st.success(f"Code analysis for {analysis_type} submitted successfully!")
|
49 |
|
gemini.py
CHANGED
@@ -35,11 +35,12 @@ class GeminiModel:
|
|
35 |
def execute(self, prompt: str) -> str:
|
36 |
|
37 |
try:
|
38 |
-
|
39 |
print(f"Input tokens: {total_tokens}")
|
40 |
response = self.model.generate_content(prompt, generation_config=generation_config)
|
41 |
output_tokens = self.model.count_tokens(response.text).total_tokens
|
42 |
print(f"Output tokens: {output_tokens}")
|
43 |
-
|
|
|
44 |
except Exception as e:
|
45 |
return f"An error occurred: {e}"
|
|
|
35 |
def execute(self, prompt: str) -> str:
|
36 |
|
37 |
try:
|
38 |
+
prompt_tokens = self.model.count_tokens(prompt).total_tokens
|
39 |
print(f"Input tokens: {total_tokens}")
|
40 |
response = self.model.generate_content(prompt, generation_config=generation_config)
|
41 |
output_tokens = self.model.count_tokens(response.text).total_tokens
|
42 |
print(f"Output tokens: {output_tokens}")
|
43 |
+
|
44 |
+
return response.text,{'prompt_tokens':prompt_tokens,"total_tokens":output_tokens}
|
45 |
except Exception as e:
|
46 |
return f"An error occurred: {e}"
|
handler.py
CHANGED
@@ -1,5 +1,8 @@
|
|
1 |
import gemini
|
|
|
2 |
from prompts import *
|
|
|
|
|
3 |
|
4 |
def review_code(code, c_prompt=None):
|
5 |
if code is None or len(code) < 5 or code.isspace():
|
@@ -11,7 +14,7 @@ def review_code(code, c_prompt=None):
|
|
11 |
#prompt = validation_prompt(code.strip())
|
12 |
prompt = default_review_prompt1(code.strip())
|
13 |
|
14 |
-
|
15 |
try:
|
16 |
res = model.execute(prompt)
|
17 |
except Exception as e:
|
@@ -29,7 +32,7 @@ def refine_code(code, c_prompt=None):
|
|
29 |
#prompt = validation_prompt(code.strip())
|
30 |
prompt = default_refine_prompt(code.strip())
|
31 |
|
32 |
-
|
33 |
try:
|
34 |
res = model.execute(prompt)
|
35 |
except Exception as e:
|
@@ -47,7 +50,7 @@ def generate_documentation(code,c_prompt):
|
|
47 |
else:
|
48 |
prompt = default_doc_prompt(code.strip())
|
49 |
|
50 |
-
|
51 |
try:
|
52 |
res = model.execute(prompt)
|
53 |
except Exception as e:
|
@@ -65,7 +68,7 @@ def resume_writer(code,c_prompt):
|
|
65 |
else:
|
66 |
prompt = resume_prompt(code.strip())
|
67 |
|
68 |
-
|
69 |
try:
|
70 |
res = model.execute(prompt)
|
71 |
except Exception as e:
|
|
|
1 |
import gemini
|
2 |
+
import llama_groq
|
3 |
from prompts import *
|
4 |
+
#model = gemini.GeminiModel()
|
5 |
+
model=llama_groq.LlamaModel()
|
6 |
|
7 |
def review_code(code, c_prompt=None):
|
8 |
if code is None or len(code) < 5 or code.isspace():
|
|
|
14 |
#prompt = validation_prompt(code.strip())
|
15 |
prompt = default_review_prompt1(code.strip())
|
16 |
|
17 |
+
|
18 |
try:
|
19 |
res = model.execute(prompt)
|
20 |
except Exception as e:
|
|
|
32 |
#prompt = validation_prompt(code.strip())
|
33 |
prompt = default_refine_prompt(code.strip())
|
34 |
|
35 |
+
|
36 |
try:
|
37 |
res = model.execute(prompt)
|
38 |
except Exception as e:
|
|
|
50 |
else:
|
51 |
prompt = default_doc_prompt(code.strip())
|
52 |
|
53 |
+
|
54 |
try:
|
55 |
res = model.execute(prompt)
|
56 |
except Exception as e:
|
|
|
68 |
else:
|
69 |
prompt = resume_prompt(code.strip())
|
70 |
|
71 |
+
|
72 |
try:
|
73 |
res = model.execute(prompt)
|
74 |
except Exception as e:
|
llama_groq.py
CHANGED
@@ -30,11 +30,9 @@ class LlamaModel:
|
|
30 |
def execute(self, prompt: str) -> str:
|
31 |
|
32 |
try:
|
33 |
-
#total_tokens = self.model.count_tokens(prompt).total_tokens
|
34 |
-
#print(f"Input tokens: {total_tokens}")
|
35 |
response = self.model.invoke(prompt)
|
36 |
-
|
37 |
-
|
38 |
-
return
|
39 |
except Exception as e:
|
40 |
return f"An error occurred: {e}"
|
|
|
30 |
def execute(self, prompt: str) -> str:
|
31 |
|
32 |
try:
|
|
|
|
|
33 |
response = self.model.invoke(prompt)
|
34 |
+
res=response.content
|
35 |
+
meta=response.response_metadata
|
36 |
+
return {'text':res,'meta':meta}
|
37 |
except Exception as e:
|
38 |
return f"An error occurred: {e}"
|