Spaces:
Build error
Build error
Create backend_utils.py
Browse files- backend_utils.py +461 -0
backend_utils.py
ADDED
|
@@ -0,0 +1,461 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from cherche import retrieve
|
| 2 |
+
from sentence_transformers import SentenceTransformer, util
|
| 3 |
+
from transformers import RobertaTokenizer, RobertaModel, EncoderDecoderModel
|
| 4 |
+
from config import classifier_class_mapping, config
|
| 5 |
+
import pandas as pd
|
| 6 |
+
import numpy as np
|
| 7 |
+
import pickle
|
| 8 |
+
import torch
|
| 9 |
+
from sklearn.multiclass import OneVsRestClassifier
|
| 10 |
+
from sklearn.ensemble import RandomForestClassifier
|
| 11 |
+
|
| 12 |
+
class wrappedTokenizer(RobertaTokenizer):
|
| 13 |
+
def __call__(self, text_input):
|
| 14 |
+
return self.tokenize(text_input)
|
| 15 |
+
|
| 16 |
+
def generate_index(db):
|
| 17 |
+
db_cp = db.copy()
|
| 18 |
+
index_list = []
|
| 19 |
+
for id_, dirname in db_cp.values:
|
| 20 |
+
index_list.append(
|
| 21 |
+
{
|
| 22 |
+
'id': id_,
|
| 23 |
+
'library': dirname.lower()
|
| 24 |
+
})
|
| 25 |
+
return index_list
|
| 26 |
+
|
| 27 |
+
def load_db(db_metadata_path, db_constructor_path):
|
| 28 |
+
'''
|
| 29 |
+
Function to load dataframe
|
| 30 |
+
|
| 31 |
+
Params:
|
| 32 |
+
db_metadata_path (string): the path to the db_metadata file
|
| 33 |
+
db_constructor_path (string): the path to the db_constructor file
|
| 34 |
+
|
| 35 |
+
Output:
|
| 36 |
+
db_metadata (pandas dataframe): a dataframe containing metadata information about the library
|
| 37 |
+
db_constructor (pandas dataframe): a dataframe containing the mapping of library names to valid constructor
|
| 38 |
+
'''
|
| 39 |
+
db_metadata = pd.read_csv(db_metadata_path)
|
| 40 |
+
db_metadata.dropna(inplace=True)
|
| 41 |
+
db_constructor = pd.read_csv(db_constructor_path)
|
| 42 |
+
db_constructor.dropna(inplace=True)
|
| 43 |
+
return db_metadata, db_constructor
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def load_retrieval_model_lexical(tokenizer_path, max_k, db_metadata):
|
| 48 |
+
'''
|
| 49 |
+
Function to load BM25 model
|
| 50 |
+
|
| 51 |
+
Params:
|
| 52 |
+
tokenizer_path (string): the path to a tokenizer (can be a path to either a huggingface model or local directory)
|
| 53 |
+
max_k (int): the maximum number of returned sequences
|
| 54 |
+
db_metadata (pandas dataframe): a dataframe containing metadata information about the library
|
| 55 |
+
|
| 56 |
+
Returns:
|
| 57 |
+
retrieval_model: a retrieval model
|
| 58 |
+
'''
|
| 59 |
+
# generate index
|
| 60 |
+
index_list = generate_index(db_metadata[['id', 'library']])
|
| 61 |
+
|
| 62 |
+
# load model
|
| 63 |
+
tokenizer = wrappedTokenizer.from_pretrained(tokenizer_path)
|
| 64 |
+
retrieval_model = retrieve.BM25Okapi(
|
| 65 |
+
key='id',
|
| 66 |
+
on='library',
|
| 67 |
+
documents=index_list,
|
| 68 |
+
k=max_k,
|
| 69 |
+
tokenizer=tokenizer
|
| 70 |
+
)
|
| 71 |
+
return retrieval_model
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def load_retrieval_model_deep_learning(model_path, max_k, db_metadata):
|
| 75 |
+
'''
|
| 76 |
+
Function to load a deep learning-based model
|
| 77 |
+
|
| 78 |
+
Params:
|
| 79 |
+
model_path (string): the path to the model (can be a path to either a huggingface model or local directory)
|
| 80 |
+
max_k (int): the maximum number of returned sequences
|
| 81 |
+
db_metadata (pandas dataframe): a dataframe containing metadata information about the library
|
| 82 |
+
|
| 83 |
+
Returns:
|
| 84 |
+
retrieval_model: a retrieval model
|
| 85 |
+
'''
|
| 86 |
+
# generate index
|
| 87 |
+
index_list = generate_index(db_metadata[['id', 'library']])
|
| 88 |
+
|
| 89 |
+
# load model
|
| 90 |
+
retrieval_model = retrieve.Encoder(
|
| 91 |
+
key='id',
|
| 92 |
+
on='library',
|
| 93 |
+
encoder=SentenceTransformer(model_path).encode,
|
| 94 |
+
k=max_k,
|
| 95 |
+
path=f"../temp/dl.pkl"
|
| 96 |
+
)
|
| 97 |
+
retrieval_model = dl_retriever.add(documents=index_list)
|
| 98 |
+
|
| 99 |
+
return retrieval_model
|
| 100 |
+
|
| 101 |
+
def load_generative_model_codebert(model_path):
|
| 102 |
+
'''
|
| 103 |
+
Function load a generative model using codebert checkpoint
|
| 104 |
+
|
| 105 |
+
Params:
|
| 106 |
+
model_path (string): path to the model (can be a path to either a huggingface model or local directory)
|
| 107 |
+
|
| 108 |
+
Returns:
|
| 109 |
+
tokenizer: a huggingface tokenizer
|
| 110 |
+
generative_model: a generative model to generate API pattern given the library name as the input
|
| 111 |
+
'''
|
| 112 |
+
tokenizer = RobertaTokenizer.from_pretrained(model_path)
|
| 113 |
+
generative_model = EncoderDecoderModel.from_pretrained(model_path)
|
| 114 |
+
return tokenizer, generative_model
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
def get_metadata_library(predictions, db_metadata):
|
| 118 |
+
'''
|
| 119 |
+
Function to get the metadata of a library using the library unique id
|
| 120 |
+
|
| 121 |
+
Params:
|
| 122 |
+
predictions (list): a list of dictionary containing the prediction details
|
| 123 |
+
db_metadata: a dataframe containing metadata information about the library
|
| 124 |
+
|
| 125 |
+
Returns:
|
| 126 |
+
metadata_dict (dict): a dictionary where the key is the metadata type and the value is the metadata value
|
| 127 |
+
'''
|
| 128 |
+
predictions_cp = predictions.copy()
|
| 129 |
+
for prediction_dict in predictions_cp:
|
| 130 |
+
temp_db = db_metadata[db_metadata.id==prediction_dict.get('id')]
|
| 131 |
+
assert(len(temp_db)==1)
|
| 132 |
+
|
| 133 |
+
prediction_dict['Sensor Type'] = temp_db.iloc[0]['cat'].capitalize()
|
| 134 |
+
prediction_dict['Github URL'] = temp_db.iloc[0]['url']
|
| 135 |
+
|
| 136 |
+
# prefer the description from the arduino library list, if not found use the repo description
|
| 137 |
+
if temp_db.iloc[0].desc_ardulib != 'nan':
|
| 138 |
+
prediction_dict['Description'] = temp_db.iloc[0].desc_ardulib
|
| 139 |
+
|
| 140 |
+
elif temp_db.iloc[0].desc_repo != 'nan':
|
| 141 |
+
prediction_dict['Description'] = temp_db.iloc[0].desc_repo
|
| 142 |
+
|
| 143 |
+
else:
|
| 144 |
+
prediction_dict['Description'] = "Description not found"
|
| 145 |
+
print(prediction_dict)
|
| 146 |
+
print("-----------------------------------------------------------------")
|
| 147 |
+
return predictions_cp
|
| 148 |
+
|
| 149 |
+
def id_to_libname(id_, db_metadata):
|
| 150 |
+
'''
|
| 151 |
+
Function to convert a library id to its library name
|
| 152 |
+
|
| 153 |
+
Params:
|
| 154 |
+
id_ (int): a unique library id
|
| 155 |
+
db_metadata (pandas dataframe): a dataframe containing metadata information about the library
|
| 156 |
+
|
| 157 |
+
Returns:
|
| 158 |
+
library_name (string): the library name that corresponds to the input id
|
| 159 |
+
'''
|
| 160 |
+
temp_db = db_metadata[db_metadata.id==id_]
|
| 161 |
+
assert(len(temp_db)==1)
|
| 162 |
+
library_name = temp_db.iloc[0].library
|
| 163 |
+
return library_name
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
def retrieve_libraries(retrieval_model, model_input, db_metadata):
|
| 167 |
+
'''
|
| 168 |
+
Function to retrieve a set of relevant libraries using a model based on the input query
|
| 169 |
+
|
| 170 |
+
Params:
|
| 171 |
+
retrieval_model: a model to perform retrieval
|
| 172 |
+
model_input (string): an input query from the user
|
| 173 |
+
|
| 174 |
+
Returns:
|
| 175 |
+
library_ids (list): a list of library unique ids
|
| 176 |
+
library_names (list): a list of library names
|
| 177 |
+
'''
|
| 178 |
+
results = retrieval_model(model_input)
|
| 179 |
+
library_ids = [item.get('id') for item in results]
|
| 180 |
+
library_names = [id_to_libname(item, db_metadata) for item in library_ids]
|
| 181 |
+
return library_ids, library_names
|
| 182 |
+
|
| 183 |
+
def prepare_input_generative_model(library_ids, db_constructor):
|
| 184 |
+
'''
|
| 185 |
+
Function to prepare the input of the model to generate API usage patterns
|
| 186 |
+
|
| 187 |
+
Params:
|
| 188 |
+
library_ids (list): a list of library ids
|
| 189 |
+
db_constructor (pandas dataframe): a dataframe containing the mapping of library names to valid constructor
|
| 190 |
+
|
| 191 |
+
Returns:
|
| 192 |
+
output_dict (dictionary): a dictionary where the key is library id and the value is a list of valid inputs
|
| 193 |
+
'''
|
| 194 |
+
output_dict = {}
|
| 195 |
+
for id_ in library_ids:
|
| 196 |
+
temp_db = db_constructor[db_constructor.id==id_]
|
| 197 |
+
output_dict[id_] = []
|
| 198 |
+
for id__, library_name, methods, constructor in temp_db.values:
|
| 199 |
+
output_dict[id_].append(
|
| 200 |
+
f'{library_name} [SEP] {constructor}'
|
| 201 |
+
)
|
| 202 |
+
return output_dict
|
| 203 |
+
|
| 204 |
+
def generate_api_usage_patterns(generative_model, tokenizer, model_input, num_beams, num_return_sequences):
|
| 205 |
+
'''
|
| 206 |
+
Function to generate API usage patterns
|
| 207 |
+
|
| 208 |
+
Params:
|
| 209 |
+
generative_model: a huggingface model
|
| 210 |
+
tokenizer: a huggingface tokenizer
|
| 211 |
+
model_input (string): a string in the form of <library-name> [SEP] constructor
|
| 212 |
+
num_beams (int): the beam width used for decoding
|
| 213 |
+
num_return_sequences (int): how many API usage patterns are returned by the model
|
| 214 |
+
|
| 215 |
+
Returns:
|
| 216 |
+
api_usage_patterns (list): a list of API usage patterns
|
| 217 |
+
'''
|
| 218 |
+
model_input = tokenizer(model_input, return_tensors='pt').input_ids
|
| 219 |
+
model_output = generative_model.generate(
|
| 220 |
+
model_input,
|
| 221 |
+
num_beams=num_beams,
|
| 222 |
+
num_return_sequences=num_return_sequences
|
| 223 |
+
)
|
| 224 |
+
api_usage_patterns = tokenizer.batch_decode(
|
| 225 |
+
model_output,
|
| 226 |
+
skip_special_tokens=True
|
| 227 |
+
)
|
| 228 |
+
return api_usage_patterns
|
| 229 |
+
|
| 230 |
+
def generate_api_usage_patterns_batch(generative_model, tokenizer, library_ids, db_constructor, num_beams, num_return_sequences):
|
| 231 |
+
'''
|
| 232 |
+
Function to generate API usage patterns in batch
|
| 233 |
+
|
| 234 |
+
Params:
|
| 235 |
+
generative_model: a huggingface model
|
| 236 |
+
tokenizer: a huggingface tokenizer
|
| 237 |
+
library_ids (list): a list of libary ids
|
| 238 |
+
db_constructor (pandas dataframe): a dataframe containing the mapping of library names to valid constructor
|
| 239 |
+
num_beams (int): the beam width used for decoding
|
| 240 |
+
num_return_sequences (int): how many API usage patterns are returned by the model
|
| 241 |
+
|
| 242 |
+
Returns:
|
| 243 |
+
predictions (list): a list of dictionary containing the api usage patterns, library name, and id
|
| 244 |
+
'''
|
| 245 |
+
input_generative_model_dict = prepare_input_generative_model(library_ids, db_constructor)
|
| 246 |
+
|
| 247 |
+
predictions = []
|
| 248 |
+
for id_ in input_generative_model_dict:
|
| 249 |
+
temp_dict = {
|
| 250 |
+
'id': id_,
|
| 251 |
+
'library_name': None,
|
| 252 |
+
'hw_config': None,
|
| 253 |
+
'usage_patterns': {}
|
| 254 |
+
}
|
| 255 |
+
for input_generative_model in input_generative_model_dict.get(id_):
|
| 256 |
+
api_usage_patterns = generate_api_usage_patterns(
|
| 257 |
+
generative_model,
|
| 258 |
+
tokenizer,
|
| 259 |
+
input_generative_model,
|
| 260 |
+
num_beams,
|
| 261 |
+
num_return_sequences
|
| 262 |
+
)
|
| 263 |
+
|
| 264 |
+
temp = input_generative_model.split("[SEP]")
|
| 265 |
+
library_name = temp[0].strip()
|
| 266 |
+
constructor = temp[1].strip()
|
| 267 |
+
|
| 268 |
+
assert(constructor not in temp_dict.get('usage_patterns'))
|
| 269 |
+
temp_dict['usage_patterns'][constructor] = api_usage_patterns
|
| 270 |
+
|
| 271 |
+
assert(temp_dict.get('library_name')==None)
|
| 272 |
+
temp_dict['library_name'] = library_name
|
| 273 |
+
predictions.append(temp_dict)
|
| 274 |
+
return predictions
|
| 275 |
+
|
| 276 |
+
# def generate_api_usage_patterns(generative_model, tokenizer, model_inputs, num_beams, num_return_sequences):
|
| 277 |
+
# '''
|
| 278 |
+
# Function to generate API usage patterns
|
| 279 |
+
|
| 280 |
+
# Params:
|
| 281 |
+
# generative_model: a huggingface model
|
| 282 |
+
# tokenizer: a huggingface tokenizer
|
| 283 |
+
# model_inputs (list): a list of <library-name> [SEP] <constructor>
|
| 284 |
+
# num_beams (int): the beam width used for decoding
|
| 285 |
+
# num_return_sequences (int): how many API usage patterns are returned by the model
|
| 286 |
+
|
| 287 |
+
# Returns:
|
| 288 |
+
# api_usage_patterns (list): a list of API usage patterns
|
| 289 |
+
# '''
|
| 290 |
+
# model_inputs = tokenizer(
|
| 291 |
+
# model_inputs,
|
| 292 |
+
# max_length=max_length,
|
| 293 |
+
# padding='max_length',
|
| 294 |
+
# return_tensors='pt',
|
| 295 |
+
# truncation=True)
|
| 296 |
+
|
| 297 |
+
# model_output = generative_model.generate(
|
| 298 |
+
# **model_inputs,
|
| 299 |
+
# num_beams=num_beams,
|
| 300 |
+
# num_return_sequences=num_return_sequences
|
| 301 |
+
# )
|
| 302 |
+
# api_usage_patterns = tokenizer.batch_decode(
|
| 303 |
+
# model_output,
|
| 304 |
+
# skip_special_tokens=True
|
| 305 |
+
# )
|
| 306 |
+
|
| 307 |
+
# api_usage_patterns = [api_usage_patterns[i:i+num_return_sequences] for i in range(0, len(api_usage_patterns), num_return_sequences)]
|
| 308 |
+
# return api_usage_patterns
|
| 309 |
+
|
| 310 |
+
def prepare_input_classification_model(id_, db_metadata):
|
| 311 |
+
'''
|
| 312 |
+
Function to get a feature for a classification model using library id
|
| 313 |
+
|
| 314 |
+
Params:
|
| 315 |
+
id_ (int): a unique library id
|
| 316 |
+
db_metadata (pandas dataframe): a dataframe containing metadata information about the library
|
| 317 |
+
|
| 318 |
+
Returns:
|
| 319 |
+
feature (string): a feature used for the classification model input
|
| 320 |
+
'''
|
| 321 |
+
temp_db = db_metadata[db_metadata.id == id_]
|
| 322 |
+
assert(len(temp_db)==1)
|
| 323 |
+
feature = temp_db.iloc[0].features
|
| 324 |
+
return feature
|
| 325 |
+
|
| 326 |
+
def load_hw_classifier(model_path_classifier, model_path_classifier_head):
|
| 327 |
+
'''
|
| 328 |
+
Function to load a classifier model and classifier head
|
| 329 |
+
|
| 330 |
+
Params:
|
| 331 |
+
model_path_classifier (string): path to the classifier checkpoint (can be either huggingface path or local directory)
|
| 332 |
+
model_path_classifier_head (string): path to the classifier head checkpoint (should be a local directory)
|
| 333 |
+
|
| 334 |
+
Returns:
|
| 335 |
+
classifier_model: a huggingface model
|
| 336 |
+
classifier_head: a classifier model (can be either svm or rf)
|
| 337 |
+
tokenizer: a huggingface tokenizer
|
| 338 |
+
'''
|
| 339 |
+
tokenizer = RobertaTokenizer.from_pretrained(model_path_classifier)
|
| 340 |
+
classifier_model = RobertaModel.from_pretrained(model_path_classifier)
|
| 341 |
+
with open(model_path_classifier_head, 'rb') as f:
|
| 342 |
+
classifier_head = pickle.load(f)
|
| 343 |
+
return classifier_model, classifier_head, tokenizer
|
| 344 |
+
|
| 345 |
+
def predict_hw_config(classifier_model, classifier_tokenizer, classifier_head, library_ids, db_metadata, max_length):
|
| 346 |
+
'''
|
| 347 |
+
Function to predict hardware configs
|
| 348 |
+
|
| 349 |
+
Params:
|
| 350 |
+
classifier_model: a huggingface model to convert a feature to a feature vector
|
| 351 |
+
classifier_tokenizer: a huggingface tokenizer
|
| 352 |
+
classifier_head: a classifier head
|
| 353 |
+
library_ids (list): a list of library ids
|
| 354 |
+
db_metadata (pandas dataframe): a dataframe containing metadata information about the library
|
| 355 |
+
max_length (int): max length of the tokenizer output
|
| 356 |
+
|
| 357 |
+
Returns:
|
| 358 |
+
prediction (list): a list of prediction
|
| 359 |
+
'''
|
| 360 |
+
|
| 361 |
+
features = [prepare_input_classification_model(id_, db_metadata) for id_ in library_ids]
|
| 362 |
+
tokenized_features = classifier_tokenizer(
|
| 363 |
+
features,
|
| 364 |
+
max_length=max_length,
|
| 365 |
+
padding='max_length',
|
| 366 |
+
return_tensors='pt',
|
| 367 |
+
truncation=True
|
| 368 |
+
)
|
| 369 |
+
with torch.no_grad():
|
| 370 |
+
embedding_features = classifier_model(**tokenized_features).pooler_output.numpy()
|
| 371 |
+
prediction = classifier_head.predict_proba(embedding_features).tolist()
|
| 372 |
+
prediction = np.argmax(prediction, axis=1).tolist()
|
| 373 |
+
prediction = [classifier_class_mapping.get(idx) for idx in prediction]
|
| 374 |
+
return prediction
|
| 375 |
+
|
| 376 |
+
|
| 377 |
+
def initialize_all_components(config):
|
| 378 |
+
'''
|
| 379 |
+
Function to initialize all components of ArduProg
|
| 380 |
+
|
| 381 |
+
Params:
|
| 382 |
+
config (dict): a dictionary containing the configuration to initialize all components
|
| 383 |
+
|
| 384 |
+
Returns:
|
| 385 |
+
db_metadata (pandas dataframe): a dataframe containing metadata information about the library
|
| 386 |
+
db_constructor (pandas dataframe): a dataframe containing the mapping of library names to valid constructor
|
| 387 |
+
model_retrieval, model_generative : a huggingface model
|
| 388 |
+
tokenizer_generative, tokenizer_classifier: a huggingface tokenizer
|
| 389 |
+
model_classifier: a huggingface model
|
| 390 |
+
classifier_head: a random forest model
|
| 391 |
+
'''
|
| 392 |
+
# load db
|
| 393 |
+
db_metadata, db_constructor = load_db(
|
| 394 |
+
config.get('db_metadata_path'),
|
| 395 |
+
config.get('db_constructor_path')
|
| 396 |
+
)
|
| 397 |
+
|
| 398 |
+
# load model
|
| 399 |
+
model_retrieval = load_retrieval_model_lexical(
|
| 400 |
+
config.get('tokenizer_path_retrieval'),
|
| 401 |
+
config.get('max_k'),
|
| 402 |
+
db_metadata,
|
| 403 |
+
)
|
| 404 |
+
|
| 405 |
+
tokenizer_generative, model_generative = load_generative_model_codebert(config.get('model_path_generative'))
|
| 406 |
+
|
| 407 |
+
model_classifier, classifier_head, tokenizer_classifier = load_hw_classifier(
|
| 408 |
+
config.get('model_path_classifier'),
|
| 409 |
+
config.get('classifier_head_path')
|
| 410 |
+
)
|
| 411 |
+
|
| 412 |
+
return db_metadata, db_constructor, model_retrieval, model_generative, tokenizer_generative, model_classifier, classifier_head, tokenizer_classifier
|
| 413 |
+
|
| 414 |
+
def make_predictions(input_query,
|
| 415 |
+
model_retrieval,
|
| 416 |
+
model_generative,
|
| 417 |
+
model_classifier, classifier_head,
|
| 418 |
+
tokenizer_generative, tokenizer_classifier,
|
| 419 |
+
db_metadata, db_constructor,
|
| 420 |
+
config):
|
| 421 |
+
'''
|
| 422 |
+
Function to retrieve relevant libraries, generate API usage patterns, and predict the hw configs
|
| 423 |
+
|
| 424 |
+
Params:
|
| 425 |
+
input_query (string): a query from the user
|
| 426 |
+
model_retrieval, model_generative, model_classifier: a huggingface model
|
| 427 |
+
classifier_head: a random forest classifier
|
| 428 |
+
toeknizer_generative, tokenizer_classifier: a hugggingface tokenizer,
|
| 429 |
+
db_metadata (pandas dataframe): a dataframe containing metadata information about the library
|
| 430 |
+
db_constructor (pandas dataframe): a dataframe containing the mapping of library names to valid constructor
|
| 431 |
+
config (dict): a dictionary containing the configuration to initialize all components
|
| 432 |
+
|
| 433 |
+
Returns:
|
| 434 |
+
predictions (list): a list of dictionary containing the prediction details
|
| 435 |
+
'''
|
| 436 |
+
library_ids, library_names = retrieve_libraries(model_retrieval, input_query, db_metadata)
|
| 437 |
+
|
| 438 |
+
predictions = generate_api_usage_patterns_batch(
|
| 439 |
+
model_generative,
|
| 440 |
+
tokenizer_generative,
|
| 441 |
+
library_ids,
|
| 442 |
+
db_constructor,
|
| 443 |
+
config.get('num_beams'),
|
| 444 |
+
config.get('num_return_sequences')
|
| 445 |
+
)
|
| 446 |
+
|
| 447 |
+
hw_configs = predict_hw_config(
|
| 448 |
+
model_classifier,
|
| 449 |
+
tokenizer_classifier,
|
| 450 |
+
classifier_head,
|
| 451 |
+
library_ids,
|
| 452 |
+
db_metadata,
|
| 453 |
+
config.get('max_length')
|
| 454 |
+
)
|
| 455 |
+
|
| 456 |
+
for output_dict, hw_config in zip(predictions, hw_configs):
|
| 457 |
+
output_dict['hw_config'] = hw_config
|
| 458 |
+
|
| 459 |
+
predictions = get_metadata_library(predictions, db_metadata)
|
| 460 |
+
|
| 461 |
+
return predictions
|