assistant / app.py
ilanaliouchouche
vdb updated
936c96b
import os
import gradio as gr
import cohere
from typing import Generator
from langchain_chroma import Chroma
# from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.embeddings.huggingface import HuggingFaceEmbeddings
from langchain.schema.document import Document
from typing import List
class HFSpaceChatBot:
"""
A chatbot powered by Retrieval Augmented Generation (RAG) aimed
to be deployed on the Hugging Face Space platform.
"""
def __init__(self,
embedding_model_path: str,
vector_database_path: str,
top_k: int = 10,
embedding_model_name: str = os.getenv("EMBEDDING_MODEL"),
api_key: str = os.getenv("CO_API_KEY"),
device: str = os.getenv("DEVICE"),
system_prompt: str = "Answer the user's question",
**kwargs) -> None:
"""
Constructor for the HFSpaceChatBot class.
Args:
embedding_model_path (str): The path to the embedding model.
vector_database_path (str): The path to the vector database.
top_k (int): The number of top documents to retrieve.
embedding_model_name (str): The name of the embedding model.
api_key (str): The API key for the cohere API.
device (str): The device to run the model on.
system_prompt (str): The system prompt for the chatbot.
**kwargs: Additional keyword arguments (for the cohere API)
"""
self.chat_history = []
self.cclient = cohere.Client(api_key=api_key)
self.embedding_model = HuggingFaceEmbeddings(
model_name=embedding_model_name,
model_kwargs={"device": device},
encode_kwargs={"normalize_embeddings": True},
cache_folder=embedding_model_path
)
self.vector_database = Chroma(
persist_directory=vector_database_path,
embedding_function=self.embedding_model
)
self.top_k = top_k
self.system_prompt = system_prompt
self.model_params = kwargs
def _get_relevant_information(self,
message: str) -> List[Document]:
"""
Get the relevant information from the chat history.
Args:
message (str): The message to search for.
Returns:
List[Document]: A list of relevant documents.
"""
return self.vector_database.similarity_search(message, self.top_k)
def _fetch_response(self,
message: str,
*args) -> Generator[str, None, None]:
"""
Fetch the reponse from the cohere API.
Args:
message (str): The message of the user.
Returns:
Generator[str, None, None]: A generator yielding the output tokens.
"""
docs = self._get_relevant_information(message)
relevant_information = "\n".join(
[doc.page_content
for doc in docs])
final_message = f"{self.system_prompt}\nWith the help of the\
following context:\n{relevant_information}\n\
Answer the following question:\n{message}"
response = self.cclient.chat_stream(
message=final_message,
chat_history=self.chat_history,
**self.model_params
)
current_text = ""
for event in response:
if event.event_type == "text-generation":
current_text += event.text
yield current_text
self.chat_history.append({
"role": "USER",
"text": message
})
self.chat_history.append({
"role": "CHATBOT",
"text": current_text
})
def launch(self,
title: str,
description: str) -> None:
"""
Launch the chat interface.
Args:
title (str): The title of the chat interface.
description (str): The description of the chat interface.
"""
gr.ChatInterface(
fn=self._fetch_response,
title=title,
description=description
).launch()
# if __name__ == "__main__":
embedding_model_path = os.path.join(os.getcwd(), "model")
system_prompt = """You are now assuming the role of the personal assistant
of Ilan ALIOUCHOUCHE, a French Computer Science student.
Your task is to assist users by answering their
questions about Ilan. You have access to comprehensive
details about Ilan's education, skills, professional
experience, and interests. Don't be too chatty, and
make sure to provide accurate and relevant information.
"""
chatbot = HFSpaceChatBot(
embedding_model_path=embedding_model_path,
vector_database_path=os.path.join(os.getcwd(), "chromadb"),
system_prompt=system_prompt,
temperature=0.0001
)
title = "🤖 Ilan's Personal Agent 🤖"
description = """
You can ask my assistant (almost) anything about me! :D
You are currently using the Hugging Face Space version 🤗. A Docker image 🐳 for local use, utilizing a GGUF model is also available [here](https://github.com/ilanaliouchouche/my-ai-cv/pkgs/container/my-cv)
""" # noqa E501
chatbot.launch(
title=title,
description=description
)